Accelerated Alternating Projections for Robust Principal Component Analysis

HanQin Cai (UCLA) Jian-Feng Cai (HKUST) Ke Wei (Fudan U)

Highlights

- Novel Accelerated Low Rank Approximation via Manifold Tangent Space Projection
- State-Of-The-Art Computational Efficiency for Fully Observed RPCA
- Non-Convex Algorithm with Guaranteed Linear Convergence

Alternating Projections For RPCA

Robust Principal Component Analysis (RPCA): Recover a low-rank matrix L and a sparse matrix S from their sum $D=L+S \in \mathbb{R}^{m \times}$

Non-convex optimization problem:
$\min _{\boldsymbol{L}^{\prime}, \boldsymbol{S}^{\prime}}\left\|\boldsymbol{D}-\boldsymbol{L}^{\prime}-\boldsymbol{S}^{\prime}\right\|_{F} \quad$ subject to $\operatorname{rank}\left(\boldsymbol{L}^{\prime}\right) \leq r$ and $\left\|\boldsymbol{S}^{\prime}\right\|_{0} \leq|\operatorname{supp}(\boldsymbol{S})|$.
Alternating Projections (AltProj) [1]: Projecting alternatively onto \mathcal{M}_{r} the space of rank- r matrices, and \mathcal{S}, the space of sparse matrices.

Updating the estimate of L :

$$
\begin{equation*}
\boldsymbol{L}_{k}=\mathcal{H}_{r}\left(\boldsymbol{D}-\boldsymbol{S}_{k-1}\right), \tag{1}
\end{equation*}
$$

where \mathcal{H}_{r} is the best rank-r approximation via truncated SVD. Updating the estimate of S

$$
\begin{equation*}
\boldsymbol{S}_{k}=\mathcal{T}_{\zeta_{k}}\left(\boldsymbol{D}-\boldsymbol{L}_{k}\right) \tag{2}
\end{equation*}
$$

where \mathcal{T}_{ζ} is the hard thresholding operator, and the thresholding value ζ_{k} is chose differently at each iteration.

Drawback: Truncated SVD is computational expansive when the matrix size is large and the rank is relatively small.

AsSUMPTIONS

A1 The underlying $L \in \mathbb{R}^{m \times n}$ is a rank-r matrix with μ-incoherence, that is

$$
\|\boldsymbol{U}\|_{2, \infty} \leq \sqrt{\mu r / m}, \quad \text { and } \quad\|\boldsymbol{V}\|_{2, \infty} \leq \sqrt{\mu r / n}
$$

hold for a positive numerical constant μ, where $\boldsymbol{L}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is the SVD of \boldsymbol{L}. zero entries in each row, and at most am non-zero entries in each column.

Accelerated Alternating Projections [2]

Tangent Space: \mathcal{M}_{r} is indeed a Riemannian manifold. The tangent space of \mathcal{M}_{r} at L is defined as

$$
T=\left\{\boldsymbol{U} \boldsymbol{A}^{T}+\boldsymbol{B} \boldsymbol{V}^{T} \mid \boldsymbol{A} \in \mathbb{R}^{n \times r}, \boldsymbol{B} \in \mathbb{R}^{m \times r}\right\},
$$

where $\boldsymbol{L}_{k}=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{T}$ is the SVD of \boldsymbol{L}. The projection of a matrix \boldsymbol{Z} onto T is given by

$$
\mathcal{P}_{T} \boldsymbol{Z}=\boldsymbol{U} \boldsymbol{U}^{T} \boldsymbol{Z}+\boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^{T}-\boldsymbol{U} \boldsymbol{U}^{T} \boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^{T} .
$$

Accelerating Low-Rank Approximation: When updating the estimate of \boldsymbol{L}, we first trim \boldsymbol{L}_{k-1} to obtain an incoherent tangent space \widetilde{T}_{k-1}, then we replacing (1) by

$$
\boldsymbol{L}_{k}=\mathcal{H}_{r}\left(\mathcal{P}_{\widetilde{T}_{k-1}}\left(\boldsymbol{D}-\boldsymbol{S}_{k-1}\right)\right),
$$

which can be computed by total $4 n^{2} r+n^{2}+O\left(n r^{2}+r^{3}\right)$ flops. In contrast, (1) costs $O\left(n^{2} r\right)$ flops with a large hidden constant
Proper Threshold Values: When updating the estimate of S, we also employ the hard threshold operator as in (2). However, we choose ζ_{k} as

$$
\zeta_{k}=\beta\left(\sigma_{r+1}\left(\mathcal{P}_{\widetilde{T}_{k-1}}\left(\boldsymbol{D}-\boldsymbol{S}_{k-1}\right)\right)+\gamma^{k+1} \sigma_{1}\left(\mathcal{P}_{\widetilde{T}_{k-1}}\left(\boldsymbol{D}-\boldsymbol{S}_{k-1}\right)\right)\right),
$$

where β and γ are two positive parameters, and σ_{i} denotes the $i^{\text {th }}$ singular value. The total cost of \boldsymbol{S}_{k} updating is then $2 n^{2}+O(1)$.

Initialization: With a different thresholding parameter $\beta_{\text {init }}$, we run 2 steps of AltProj as initialization, which will give us a sufficient close tangent space to start with

Accelerated Alternating Projections (AccAltProj): In summary,

Theorem 1 (Recovery Guarantee) Let \boldsymbol{L} and \boldsymbol{S} be two matrices satisfying Assumptions $A 1$ and $A 2$ with $\alpha \lesssim \min \left\{\frac{1}{\mu r^{2} \kappa^{3}}, \frac{1}{\mu^{1.5} r^{2} \kappa}, \frac{1}{\mu^{2} r^{2}}\right\}$. If the thresholding parameters obey $\frac{\mu r \sigma_{1}^{L}}{\sqrt{m n} \sigma_{1}^{D}} \leq \beta_{\text {init }} \leq \frac{3 \mu r \sigma_{1}^{L}}{\sqrt{m n} \sigma_{1}^{D}}$ and $\beta=\frac{\mu r}{2 \sqrt{m n}}$, alone with the convergence rate parameter $\gamma \in\left(\frac{1}{\sqrt{12}}, 1\right)$, then the outputs of AccAltProj satisfy

$$
\left\|\boldsymbol{L}-\boldsymbol{L}_{k}\right\|_{F} \leq \epsilon \sigma_{1}^{L},\left\|\boldsymbol{S}-\boldsymbol{S}_{k}\right\|_{\infty} \leq \frac{\epsilon}{\sqrt{m n}} \sigma_{1}^{L}, \text { and } \operatorname{supp}\left(\boldsymbol{S}_{k}\right) \subset \operatorname{supp}(\boldsymbol{S})
$$

Numerical Experiments

Synthetic Data: An $n \times n$ rank-r matrix \boldsymbol{L} is formed via $\boldsymbol{L}=\boldsymbol{P} \boldsymbol{Q}^{T}$, where $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{n \times r}$ are two random matrices having their entries drawn' i.i.d from the standard normal distribution. The locations of the non-zero entries of the sparse matrix \boldsymbol{S} are sampled uniformly and independently without replacement, while the values of the non-zero entries are drawn i.i.d from the uniform distribution over the interval $\left[-c \cdot \mathbb{E}\left(\mid[\boldsymbol{L}]_{i j} \|\right), c\right.$ $\left.\mathbb{E}\left(\left|[\boldsymbol{L}]_{i j}\right|\right)\right]$ for some constant $c>0$. The $k^{t h}$ iteration relative computing error is defined as $\operatorname{err}_{k}=\left\|\boldsymbol{D}-\boldsymbol{L}_{k}-\boldsymbol{S}_{k}\right\|_{F} /\|\boldsymbol{D}\|_{F}$ Speeds Comparisons among AccAltProj [2], AltProj [1] and GD [3]:

Left: Varying dimension n vs runtime, where $r=5, \alpha \xlongequal{\text { Spasist Facalor } p}=0.1, c=1$ and n varies from 1000 to 15000 . The algorithms are terminated after $\operatorname{err}_{k}<1 \times 10^{-4}$ is satisfied. Center: Varying sparsity factor α vs runtime, where $r=5, c=1$ and $n=2500$. The algorithms are terminated when either $\operatorname{err}_{k}<1 \times 10^{-4}$. Right: Relative error err_{k} vs runtime, where $r=5, \alpha=0.1, c=1$, and $n=2500$. The algorithms are terminated afte $\operatorname{err}_{k}<1 \times 10^{-5}$ is satisfied

Video Background Subtraction: The two videos we have used for this test are Shoppingmall and Restaurant which can be found at [4]. Each video can be represented by a matrix, where each column of the matrix is a vec torized frame of the video. Then, we apply AccAltProj to decompose the matrix into a low-rank part which represents the static background of the video and a sparse part which represents the moving objects in the video.

REFERENCES

1] P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, "Non-convex robust PCA," in Advances in Neural Information Processing Systems, 2014.
H. Cai, J.-F. Cai, and K. Wei, "Accelerated alternating projections for robust principal H. Cai, J.-F. Cai, and K. Wei, "Accelerated alternating projection
component analysis," Journal of Machine Learning Research, 2019.
X. Yi, D. Park, Y. Chen, and C. Caramanis, "Fast algorithms for robust PCA via gradiX. Yi, D. Park, Y. Chen, and C. Caramanis, Fast algorithms for robust

