

HIGHLIGHTS

- Novel Accelerated Low Rank Approximation via Manifold Tangent Space Projection
- State-Of-The-Art Computational Efficiency for Fully Observed RPCA
- Non-Convex Algorithm with Guaranteed Linear Convergence

ALTERNATING PROJECTIONS FOR RPCA

Robust Principal Component Analysis (RPCA): Recover a low-rank matrix *L* and a sparse matrix *S* from their sum $D = L + S \in \mathbb{R}^{m \times n}$.

Non-convex optimization problem:

 $\min_{\boldsymbol{L'},\boldsymbol{S'}} \|\boldsymbol{D} - \boldsymbol{L'} - \boldsymbol{S'}\|_F \quad \text{subject to } rank(\boldsymbol{L'}) \leq r \text{ and } \|\boldsymbol{S'}\|_0 \leq |supp(\boldsymbol{S})|.$

Alternating Projections (AltProj) [1]: Projecting alternatively onto \mathcal{M}_r , the space of rank-r matrices, and S, the space of sparse matrices.

Updating the estimate of *L*:

$$\boldsymbol{L}_k = \mathcal{H}_r(\boldsymbol{D} - \boldsymbol{S}_{k-1}),$$

where \mathcal{H}_r is the best rank-*r* approximation via truncated SVD.

Updating the estimate of *S***:**

$$\boldsymbol{S}_k = \mathcal{T}_{\zeta_k}(\boldsymbol{D} - \boldsymbol{L}_k),$$

where $\mathcal{T}_{\mathcal{C}}$ is the hard thresholding operator, and the thresholding value ζ_k is chose differently at each iteration.

Drawback: Truncated SVD is computational expansive when the matrix size is large and the rank is relatively small.

ASSUMPTIONS

A1 The underlying $L \in \mathbb{R}^{m \times n}$ is a rank-r matrix with μ -incoherence, that is

 $\|\boldsymbol{U}\|_{2,\infty} \leq \sqrt{\mu r/m}, \text{ and } \|\boldsymbol{V}\|_{2,\infty} \leq \sqrt{\mu r/n}$

hold for a positive numerical constant μ , where $L = U \Sigma V^T$ is the SVD of L.

A2 The underlying $S \in \mathbb{R}^{m \times n}$ is α -sparse. That is, S has at most αn non*zero entries in each row, and at most* αm *non-zero entries in each column.*

Accelerated Alternating Projections for Robust Principal Component Analysis

HanQin Cai (UCLA) Jian-Feng Cai (HKUST) Ke Wei (Fudan U)

ACCELERATED ALTERNATING PROJECTIONS [2]

Tangent Space: M_r is indeed a Riemannian manifold. The tangent space of \mathcal{M}_r at \boldsymbol{L} is defined as

$$T = \{ \boldsymbol{U}\boldsymbol{A}^T + \boldsymbol{B}\boldsymbol{V}^T \mid \boldsymbol{A} \in \mathbb{R}^{n \times r}, \boldsymbol{B} \in \mathbb{R}^{m \times r} \},\$$

where $L_k = U_k \Sigma_k V_k^T$ is the SVD of L. The projection of a matrix Z onto *T* is given by

 $\mathcal{P}_T \boldsymbol{Z} = \boldsymbol{U} \boldsymbol{U}^T \boldsymbol{Z} + \boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^T - \boldsymbol{U} \boldsymbol{U}^T \boldsymbol{Z} \boldsymbol{V} \boldsymbol{V}^T.$

Accelerating Low-Rank Approximation: When updating the estimate of L, we first trim L_{k-1} to obtain an incoherent tangent space T_{k-1} , then we replacing (1) by

$$\boldsymbol{L}_{k} = \mathcal{H}_{r}(\mathcal{P}_{\widetilde{T}_{k-1}}(\boldsymbol{D} - \boldsymbol{S}_{k-1})),$$

which can be computed by total $4n^2r + n^2 + O(nr^2 + r^3)$ flops. In contrast, (1) costs $O(n^2r)$ flops with a large hidden constant.

Proper Threshold Values: When updating the estimate of *S*, we also employ the hard threshold operator as in (2). However, we choose ζ_k as

$$\zeta_k = \beta(\sigma_{r+1}(\mathcal{P}_{\widetilde{T}_{k-1}}(\boldsymbol{D} - \boldsymbol{S}_{k-1})) + \gamma^{k+1}\sigma_1(\mathcal{P}_{\widetilde{T}_{k-1}}(\boldsymbol{D} - \boldsymbol{S}_{k-1}))$$

where β and γ are two positive parameters, and σ_i denotes the i^{th} singular value. The total cost of S_k updating is then $2n^2 + O(1)$.

Initialization: With a different thresholding parameter β_{init} , we run 2 steps of AltProj as initialization, which will give us a sufficient close tangent space to start with.

Accelerated Alternating Projections (AccAltProj): In summary,

Theorem 1 (Recovery Guarantee) Let *L* and *S* be two matrices satisfying Assumptions A1 and A2 with $\alpha \leq \min\{\frac{1}{\mu r^2 \kappa^3}, \frac{1}{\mu^{1.5} r^2 \kappa}, \frac{1}{\mu^2 r^2}\}$. If the thresholding parameters obey $\frac{\mu r \sigma_1^L}{\sqrt{mn} \sigma_1^D} \leq \beta_{init} \leq \frac{3\mu r \sigma_1^L}{\sqrt{mn} \sigma_1^D}$ and $\beta = \frac{\mu r}{2\sqrt{mn}}$, alone with the convergence rate parameter $\gamma \in (\frac{1}{\sqrt{12}}, 1)$, then the outputs of AccAltProj satisfy

$$\|\boldsymbol{L} - \boldsymbol{L}_k\|_F \le \epsilon \sigma_1^L, \|\boldsymbol{S} - \boldsymbol{S}_k\|_{\infty} \le rac{\epsilon}{\sqrt{mn}} \sigma_1^L, \text{ and } supp(\boldsymbol{S}_k) \subset supp$$

in $O(\log_{\gamma} \epsilon)$ iterations.

NUMERICAL EXPERIMENTS

Synthetic Data: An $n \times n$ rank-r matrix L is formed via $L = PQ^{T}$, where $P, Q \in \mathbb{R}^{n \times r}$ are two random matrices having their entries drawn i.i.d from the standard normal distribution. The locations of the non-zero entries of the sparse matrix *S* are sampled uniformly and independently without replacement, while the values of the non-zero entries are drawn i.i.d from the uniform distribution over the interval $[-c \cdot \mathbb{E}(|[L]_{ij}|), c \cdot$ $\mathbb{E}(|[\boldsymbol{L}]_{ij}|)]$ for some constant c > 0. The k^{th} iteration relative computing error is defined as $err_k = \|\boldsymbol{D} - \boldsymbol{L}_k - \boldsymbol{S}_k\|_F / \|\boldsymbol{D}\|_F$.

Speeds Comparisons among AccAltProj [2], AltProj [1] and GD [3]:

Left: Varying dimension n vs runtime, where r = 5, $\alpha = 0.1$, c = 1, and n varies from 1000 to 15000. The algorithms are terminated after $err_k < 1 \times 10^{-4}$ is satisfied. Center: Varying sparsity factor α vs runtime, where r = 5, c = 1 and n = 2500. The algorithms are terminated when either $err_k < 1 \times 10^{-4}$. Right: Relative error err_k vs runtime, where r = 5, $\alpha = 0.1$, c = 1, and n = 2500. The algorithms are terminated after $err_k < 1 \times 10^{-5}$ is satisfied.

Video Background Subtraction: The two videos we have used for this test are *Shoppingmall* and *Restaurant* which can be found at [4]. Each video can be represented by a matrix, where each column of the matrix is a vectorized frame of the video. Then, we apply AccAltProj to decompose the matrix into a low-rank part which represents the static background of the video and a sparse part which represents the moving objects in the video.

 $op(oldsymbol{S})$

REFERENCES

- P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, "Non-convex robust PCA," in Advances in Neural Information Processing Systems, 2014.
- H. Cai, J.-F. Cai, and K. Wei, "Accelerated alternating projections for robust principal [2] component analysis," Journal of Machine Learning Research, 2019.
- X. Yi, D. Park, Y. Chen, and C. Caramanis, "Fast algorithms for robust PCA via gradient descent," in Advances in neural information processing systems, 2016.
- perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

