HIGHLIGHTS

e Novel Accelerated Low Rank Approximation via Manifold Tangent
Space Projection

o State-Of-The-Art Computational Efficiency for Fully Observed RPCA

e Non-Convex Algorithm with Guaranteed Linear Convergence

ALTERNATING PROJECTIONS FOR RPCA

Robust Principal Component Analysis (RPCA): Recover a low-rank
matrix L and a sparse matrix S from their sum D = L + S5 € R™*".

Non-convex optimization problem:

min ||D — L' —

L’,S’ 'l

subject to rank(L") < r and ||S’||o < |supp(S)|.

Alternating Projections (AltProj) [1]: Projecting alternatively onto M.,
the space of rank-r matrices, and &, the space of sparse matrices.

Updating the estimate of L:
Ly =H.(D— Sk_1), (1)

where H, is the best rank-r approximation via truncated SVD.

Updating the estimate of S:
Sy, = T¢, (D — Ly), 2)

where 7 is the hard thresholding operator, and the thresholding value
(x 1s chose differently at each iteration.

Drawback: Truncated SVD is computational expansive when the ma-
trix size is large and the rank is relatively small.

ASSUMPTIONS

A1 The underlying L € R™*" is a rank-r matrix with p-incoherence, that is

<Awpr/m, and |[|V|2.c0 < pur/n

hold for a positive numerical constant p, where L = UXV! is the SVD of L.

A2 The underlying S € R™*"™ is a-sparse. That is, S has at most an non-
zero entries in each row, and at most aom non-zero entries in each column.
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ACCELERATED ALTERNATING PROJECTIONS [2]

Tangent Space: M, is indeed a Riemannian manifold. The tangent
space of M,. at L is defined as

T={UA" + BV | AcR"™" BcR™ "},

where L, = U, X, VkT is the SVD of L. The projection of a matrix Z onto
T is given by

PrZ=UU"Z+2zvv!i _vutzvv?'.

Accelerating Low-Rank Approximation: When updating the estimate

of L, we first trim Lj_; to obtain an incoherent tangent space Tk_l, then
we replacing (1) by

Ly =M, (Pz_ (D — Sk-1)), (3)
which can be computed by total 4n?r + n* + O(nr* + r°) flops. In
contrast, (1) costs O(n*r) flops with a large hidden constant.

Proper Threshold Values: When updating the estimate of S, we also
employ the hard threshold operator as in (2). However, we choose (j, as

Gk = B(ory1(Ps (D —Sp1)) +~4"o1(Pz (D — Sk1))),
where 8 and ~ are two positive parameters, and o; denotes the ‘"
singular value. The total cost of Sy updating is then 2n* + O(1).

Initialization: With a different thresholding parameter (;,;;, we run
2 steps of AltProj as initialization, which will give us a sufficient close
tangent space to start with.

Accelerated Alternating Projections (AccAltProj): In summary,

Theorem 1 (Recovery Guarantee) Let L and S be two matrices satisfying
Assumptions Al and A2 with a < min{ 1 }. If the threshold-

/’LTQK’:S’ ,ul OS2 ,u2 2

L
ing parameters obey \/‘7%:(17 < Binir < 3“”’11) and B = \/7 alone with the
1

mnaoy

convergence rate parameter y € (\/ﬁ’ 1), then the outputs of AccAltProj satisfy

€
HL T LkHF < 60—%7 ||S T Sk”oo <

S T

o1, and supp(Si) C supp(S)

in O(log,, €) iterations.
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NUMERICAL EXPERIMENTS

Synthetic Data: An n x n rank-r matrix L is formed via L = PQ7,
where P, Q € R"*" are two random matrices having their entries drawn
i.i.d from the standard normal distribution. The locations of the non-zero
entries of the sparse matrix S are sampled uniformly and independently
without replacement, while the values of the non-zero entries are drawn
i.i.d from the uniform distribution over the interval [—c - E(|[L];;|),c -
E(|[L];;])] for some constant ¢ > 0. The k'" iteration relative Computing
error is defined as erry = ||D — Li — Sk||r/||D| F.

Speeds Comparisons among AccAltPro] [2], AltProj [ 1] and GD [3]:
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Left: Varying dimension n vs runtime, where » = 5, a = 0.1, ¢ = 1,
and n varies from 1000 to 15000. The algorithms are terminated after
err < 1x10* is satisfied. Center: Varying sparsity factor a vs runtime,
where r = 5, ¢ = 1 and n = 2500. The algorithms are terminated when
either erry, < 1 x 107*. Right: Relative error err; vs runtime, where
r=>5,a=0.1,c=1,and n = 2500. The algorithms are terminated after
err. < 1 x 107° is satisfied.

Video Background Subtraction: The two videos we have used for this
test are Shoppingmall and Restaurant which can be found at [4]. Each video
can be represented by a matrix, where each column of the matrix is a vec-
torized frame of the video. Then, we apply AccAltProj to decompose the
matrix into a low-rank part which represents the static background of the
video and a sparse part which represents the moving objects in the video.
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