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HIGHLIGHTS
• Novel Accelerated Low Rank Approximation via Manifold Tangent

Space Projection

• State-Of-The-Art Computational Efficiency for Fully Observed RPCA

• Non-Convex Algorithm with Guaranteed Linear Convergence

ALTERNATING PROJECTIONS FOR RPCA
Robust Principal Component Analysis (RPCA): Recover a low-rank
matrix L and a sparse matrix S from their sum D = L+ S ∈ Rm×n.

Non-convex optimization problem:

min
L′,S′

‖D −L′ − S′‖F subject to rank(L′) ≤ r and ‖S′‖0 ≤ |supp(S)|.

Alternating Projections (AltProj) [1]: Projecting alternatively ontoMr,
the space of rank-r matrices, and S , the space of sparse matrices.

Updating the estimate of L:

Lk = Hr(D − Sk−1), (1)

whereHr is the best rank-r approximation via truncated SVD.

Updating the estimate of S:

Sk = Tζk(D −Lk), (2)

where Tζ is the hard thresholding operator, and the thresholding value
ζk is chose differently at each iteration.

Drawback: Truncated SVD is computational expansive when the ma-
trix size is large and the rank is relatively small.

ASSUMPTIONS

A1 The underlying L ∈ Rm×n is a rank-r matrix with µ-incoherence, that is

‖U‖2,∞ ≤
√
µr/m, and ‖V ‖2,∞ ≤

√
µr/n

hold for a positive numerical constant µ, where L = UΣV T is the SVD of L.

A2 The underlying S ∈ Rm×n is α-sparse. That is, S has at most αn non-
zero entries in each row, and at most αm non-zero entries in each column.

ACCELERATED ALTERNATING PROJECTIONS [2]
Tangent Space: Mr is indeed a Riemannian manifold. The tangent
space ofMr at L is defined as

T = {UAT +BV T |A ∈ Rn×r,B ∈ Rm×r},

where Lk = UkΣkV
T
k is the SVD of L. The projection of a matrix Z onto

T is given by

PTZ = UUTZ +ZV V T −UUTZV V T .

Accelerating Low-Rank Approximation: When updating the estimate
of L, we first trim Lk−1 to obtain an incoherent tangent space T̃k−1, then
we replacing (1) by

Lk = Hr(PT̃k−1
(D − Sk−1)), (3)

which can be computed by total 4n2r + n2 + O(nr2 + r3) flops. In
contrast, (1) costs O(n2r) flops with a large hidden constant.

Proper Threshold Values: When updating the estimate of S, we also
employ the hard threshold operator as in (2). However, we choose ζk as

ζk = β(σr+1(PT̃k−1
(D − Sk−1)) + γk+1σ1(PT̃k−1

(D − Sk−1))),

where β and γ are two positive parameters, and σi denotes the ith

singular value. The total cost of Sk updating is then 2n2 +O(1).

Initialization: With a different thresholding parameter βinit, we run
2 steps of AltProj as initialization, which will give us a sufficient close
tangent space to start with.

Accelerated Alternating Projections (AccAltProj): In summary,

Theorem 1 (Recovery Guarantee) Let L and S be two matrices satisfying
Assumptions A1 and A2 with α . min{ 1

µr2κ3 ,
1

µ1.5r2κ ,
1

µ2r2 }. If the threshold-

ing parameters obey µrσL
1√

mnσD
1
≤ βinit ≤ 3µrσL

1√
mnσD

1
and β = µr

2
√
mn

, alone with the
convergence rate parameter γ ∈ ( 1√

12
, 1), then the outputs of AccAltProj satisfy

‖L−Lk‖F ≤ εσL1 , ‖S − Sk‖∞ ≤
ε√
mn

σL1 , and supp(Sk) ⊂ supp(S)

in O(logγ ε) iterations.

NUMERICAL EXPERIMENTS

Synthetic Data: An n × n rank-r matrix L is formed via L = PQT ,
where P ,Q ∈ Rn×r are two random matrices having their entries drawn
i.i.d from the standard normal distribution. The locations of the non-zero
entries of the sparse matrix S are sampled uniformly and independently
without replacement, while the values of the non-zero entries are drawn
i.i.d from the uniform distribution over the interval [−c · E(|[L]ij |), c ·
E(|[L]ij |)] for some constant c > 0. The kth iteration relative computing
error is defined as errk = ‖D −Lk − Sk‖F /‖D‖F .
Speeds Comparisons among AccAltProj [2], AltProj [1] and GD [3]:
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Left: Varying dimension n vs runtime, where r = 5, α = 0.1, c = 1,
and n varies from 1000 to 15000. The algorithms are terminated after
errk < 1× 10−4 is satisfied. Center: Varying sparsity factor α vs runtime,
where r = 5, c = 1 and n = 2500. The algorithms are terminated when
either errk < 1 × 10−4. Right: Relative error errk vs runtime, where
r = 5, α = 0.1, c = 1, and n = 2500. The algorithms are terminated after
errk < 1× 10−5 is satisfied.

Video Background Subtraction: The two videos we have used for this
test are Shoppingmall and Restaurant which can be found at [4]. Each video
can be represented by a matrix, where each column of the matrix is a vec-
torized frame of the video. Then, we apply AccAltProj to decompose the
matrix into a low-rank part which represents the static background of the
video and a sparse part which represents the moving objects in the video.
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