
Explainable Adversarial Attacks on Coarse-to-Fine Classifiers
Akram Heidarizadeh 1 Connor Hatfield 1 Lorenzo Lazzarotto 2 HanQin Cai3,4 George Atia 1,4

1Dept. of Electrical and Computer Engineering, University of Central Florida, Orlando FL, USA 2School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil

3Dept. of Statistics and Data Science, University of Central Florida, Orlando FL, USA 4Dept. of Computer Science, University of Central Florida, Orlando FL, USA

Overview

Challenge: Most traditional adversarial attacks such as DeepFool [5], PGD [3]

and FGSM [2] focus on fooling the model but offer little to no explainability,

making it difficult to understand how perturbations affect decisions.

Hierarchical classifiers are largely unexplored in adversarial research.

Goal: Our goal is to introduce an explainable adversarial attack that not only

fools hierarchical classifiers but also provides insights into decision making

process.

Coarse-to-Fine (C2F) Model Formulation

M is the number of coarse classes and [M ] := {1, 2, . . . , M}.
Mi is the number of fine classes associated with the i-th coarse label.

Coarse level: C : RN → [M ] assigns x to a coarse class such that:

C(x) = argmaxi∈[M ] Ci(x).

Fine level: F i : RN → [Mi] is the i-th fine classifier function. The finer class is

obtained as:

F i(x) = argmaxj∈[Mi] F
i
j(x).

Figure 1. A coarse-to-fine classification model.

Layer-wise Relevance Propagation (LRP)

LRP is a technique to determine the contribution of each pixel of the input

data to the final decision [1].

Output layer: The relevance is defined as: RL
i = δi,c , where δi,c (Kronecker

delta) sets RL
i = 1 when i = c and RL

i = 0 otherwise.
Intermediate layers: The relevance scores are backpropagated using z+ rule:
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Input layer: The relevance scores are calculated using the zβ rule [4]:
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Figure 2. Multilayer neural network annotated with the different variables describing weight

connections and activation vectors. Left: forward pass. Right: backward pass.

LRPAttack Formulation

We propose an explainable adversarial attack for Coarse-to-Fine classifiers by

using LRP to guide perturbation toward the most relevant features.

Our algorithm is designed to craft perturbations that specifically disrupt the

DNN’s attention and alter its decision-making process at both Coarse and

Fine level attacks.

Figure 3. Strengthened and suppressed features alter classifier perception, highlighting the

impact of explainable adversarial attacks (LRPF).

Fooling the Coarse Level

The goal is to

C(x + η) 6= C(x).

We define original and adversarial coarse labels as

rorg = C(x), radv = argmax
i∈[M ]\rorg

Ci(x) .

To redirect the coarse classifier’s attention from rorg to radv, the loss function

for the LRP Coarse-level attack (LRPC) is defined as:

LC = ‖LRPC(x + η; rorg)+‖p − ‖LRPC(x + η; radv)+‖p

− ‖LRPC(x + η; rorg)−‖p + ‖LRPC(x + η; radv)−‖p .

Fooling the Fine Level

The goal is to

F rorg(x + η) 6= F rorg(x), while C(x + η) = C(x).
We define original and adversarial fine labels as

forg := F rorg(x), fadv = argmax
j∈[Mrorg]\forg

F
rorg
j (x) .

Then, we define a loss function for the LRP Fine-level attack (LRPF):

LF = ‖LRPF rorg(x + η; forg)+‖p − ‖LRPF rorg(x + η; fadv)+‖p

− ‖LRPF rorg(x + η; forg)−‖p + ‖LRPF rorg(x + η; fadv)−‖p.

Experimental Setup

Dataset: 393 out of 1,000 ImageNet (ILSVRC2012) classes selected for the

C2F classifier; 80% for training, 20% for validation; evaluated on VGG-16.

C2F framework: We use a C2F classifier with M = 8 coarse categories: {fish,

bird, reptile, clothes, food, vehicle, electrical device, dog}, which are further

classified by separate fine-level classifiers.

Results

Explainability-Perceptibility Tradeoff

Our attack outperforms traditional methods in providing clearer interpretation

without compromising attack imperceptibility.

Figure 4. LRP visualizations before and after LRPC and DFC attacks. (a1) LRP of the original

coarse class and (a2) adversarial coarse class before the attack. (a3) Benign image. (c1, d1, e1)

LRP of rorg after LRPC attack for ε = 10, 20, 40, compared to (b1) for DFC. (c2, d2, e2) LRP of radv
after LRPC attack for ε = 10, 20, 40, compared to (b2) for DFC. Perturbations generated with

LRPC (ε = 10, 20, 40) are shown in (c3, d3, e3), and for DFC in (b3).

Performance Evaluation

Evaluation Metrics: The average perceptibility of the attack:

ρp
adv(f ) = 1

|D|
∑
x∈D

‖η‖p

‖x‖p
.

The fooling ratio, defined as the proportion of images whose labels are

changed by the attack relative to the total number of images.

Table 1. Fooling ratio and perceptibility of

coarse-level attacks.

Algorithm
LRPC

ε = 10
LRPC

ε = 20
LRPC

ε = 40 DFC PGDC

ρ2
adv 0.0294 0.0323 0.0405 0.0045 0.0262

ρ1
adv 0.0216 0.0174 0.0195 0.0031 0.0224

ρ∞
adv 0.0399 0.0778 0.1557 0.0408 0.0101

Fooling(%) 87.1 92.5 99.3 100 100

Table 2. Fooling ratio and perceptibility of

fine-level attacks.

Algorithm
LRPF

ε = 10
LRPF

ε = 20
LRPF

ε = 40 DFF PGDF

ρ2
adv 0.0127 0.0145 0.0151 0.0020 0.0078

ρ1
adv 0.0084 0.0079 0.0066 0.0013 0.0092

ρ∞
adv 0.0241 0.0542 0.0819 0.0029 0.0035

Fooling(%) 98.7 100 100 100 95.7

Both LRPC and LRPF achieve high fooling rates while improving explainability.

Our attack prioritizes explainability over perceptibility, while still achieving

competitive fooling rates with controlled perturbation levels.
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