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OVERVIEW ALGORITHM AND ANALYSIS NUMERICAL VALIDATION

e We proposed a novel feedforward-recurrent-mixed neural network LRPCA. We propose Learned Robust PCA: We compare our algorithm LRPCA [1] with two STOA algorithms:
(FRMNN) model to solve robust PCA (RPCA). ScaledGD [2] and AltProj [3].
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* An exact recovery guarantee is established under mild conditions. Synthetic data. We randomly generate instances following the rules in

[4] and show runtime comparison with error bar for varying outlier spar-
sity a. Problem dimension d = 3000 and rank r = 5. All algorithms halt

when [|[Y — X — S||p/[|Y ¢ < 10~4
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e The link of codes: https://github.com/caesarcai/LRPCA. We prove that there exists a parameter-sequence {(x, 7. } that guarantees

(5) converge. [0 | |
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Theorem 1 (Guaranteed recovery.) Suppose that X, is a rank-r matrix with _ T ScaledGD
INTRODUCTION p-incoherence and S, is an a-sparse matrix with o < 104/;3 . If we set the S AltProj
: _ _ T L 107
Problem settings. Recover X, from corrupted observation Y thresholding ?alues Go = || Xul[oo Qnd G = | Le-1By_y — Xu|oo for k = 1 for - E /
LRPCA, the iterates of LRPCA satisfy =
Y =X, + S5, ¢ R"7"2, (1) - " € 10°
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where X, is a rank-r data matrix and S, is a sparse outlier matrix. | | ) 005 01 015 02 0295 03
- For simplicity, we assume n = n; = ny in this poster. with the step sizes n, =1 € |7, gl. Ourlier Sparsity o

- The general case is discussed in our paper. teed 1i ithrate 1 — 0.6
ran near convergence with rate .67
guaranteed C gence wi Real data. We apply LRPCA to video background subtraction and use

allow larger step S1Zes (ScaledGD allows step step up to %) VIRAT video dataset as our benchmark. Each frame of the videos is vec-
Tinimize EH XS YHQ . . torized and become a matrix column, and all frames of a video form a
X,S 2 s (2) The {(x} formula is depe?ndent on X, that cannot be used directly. data matrix. The static backgrounds are the low-rank component of the
subject to rank(X) <r, S is a-sparse. We propose to use machine learning to calculate {(x }. data matrices and moving objects can be viewed as outliers. To achieve
the same accuracy, LRPCA runs much faster than both ScaledGD and

AltProj in all verification tests:

Joint minimization. Recover X, and S, simultaneously from Y:

The st ' Iso be 1 d to adapt t ific data sets.
- Enforcing X be to low-rank usually requires full /truncated SVD. e step size 17y, } can also be learned to adapt to specific data sets

- Computational cost is high for large-scale problems.

Non-convex minimization. Let X = LR' (L, R € R™*") to avoid the MODEL AND TRAINING TECHNIQUES VIDEO FRAME FRAME RUNTIME (secs)
low-rank constraint: . — Unfold (K-iteration) LRPCA as a Feedforward Neural Network (FNN) NAME SIZE NUMBER | LRPCA  ScaledGD  AltProj
minimize IILR +8-YI|; ParkingLot1 | 320 x 180 965 16.01 260.45 63.04
L.R,S ! (3) | |- Collect training data set Dy, i, consisting of (Y, X)) pairs. PZikiEg' th 390, i 180 5149 33 05 630.03 144 50
subject to S is a-sparse. . o ) ' '
StreeView 480 x 270 1034 33.73 626.05 167.66

ScaledGD. Scaled Gradient Descent is a state-of-the-art iterative algo- o ,
rithm for solving (3): HHLLEAIZE E(v, X )~Dpain | XK (Y, ©) = X ||,

- - Visualization of the “StreetView" instance:

Ly.1 =Ly —ng1(LxR;, +Sri1 —Y)RL (R, Ry) where X = Lx R}, is determined by Y and © based on (5).
_n _ T T Tr \—1

Ri1 = By =1 (LeBy, + Ska =) Li(Ly, L) &) The learned parameter © can be used on a certain type of RPCA problems

Si+1=Ta(Y — LRy ), that share the distribution of the training examples.

where T3 keeps the largest a entries per row and per column as outliers.
- It requires a partial sorting in every row and column.
- o is usually taken as 1.5a — 2a.

- It is expensive when « is relatively large. REFERENCES

Soft-thresholding. We propose to use a simple operator to replace 75: 4 Y r A [1] H. Caj, . Liu, and W. Yin, “Learned robust PCA: A scalable deep unfolding approach
for high-dimensional outlier detection,” in Advances in Neural Information Processing
)

0, My; | <(; [ Lo(+;Co) Hﬁl( M, ClJ—> ‘>ESK( MK CK Systems, 2021.
[SC(M)]i’j - H ]ZJ ’ [2] T. Tong, C. Ma, and Y. Chi, “

, “Accelerating ill-conditioned low-rank matrix estimation

Feedforward-Recurrent-Mixed Neural Network (FRMNN). To extend
our model to (infinite) more iterations, we concatenate a Recurrent Neu-
ral Network (RNN) after the K-layer FNN:

\ sign([M]; ;)([[M];,;| — ¢), otherwise via scaled gradient descent,” Journal of Machine Learning Research, 2021.
, , , [3] P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, “Non-convex
-It's ComPUtatlonally sLnp le. [ 256, | ‘ fa(im, 1) | ‘E'K( e gﬁﬁ robust PCA,” in Advances in Neural Information Processing Systems, 2014.
- With proper chosen thresholds ¢, it provides even faster convergence. Ao [4] X.Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust PCA via gradi-

- Practically, such gOOd ¢ can be trained from data. K . ent descent,” in Advances in Neural Information Processing Systems, 2016.




