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OVERVIEW
• We proposed a novel feedforward-recurrent-mixed neural network

(FRMNN) model to solve robust PCA (RPCA).

• An exact recovery guarantee is established under mild conditions.

• The proposed model is computational efficient and scalable to high-
dimensional RPCA problems.

• The link of codes: https://github.com/caesarcai/LRPCA.

INTRODUCTION
Problem settings. Recover X⋆ from corrupted observation Y

Y = X⋆ + S⋆ ∈ Rn1×n2 , (1)

where X⋆ is a rank-r data matrix and S⋆ is a sparse outlier matrix.
- For simplicity, we assume n = n1 = n2 in this poster.
- The general case is discussed in our paper.

Joint minimization. Recover X⋆ and S⋆ simultaneously from Y :

minimize
X,S

1

2
∥X + S − Y ∥2F

subject to rank(X) ≤ r, S is α-sparse.
(2)

- Enforcing X be to low-rank usually requires full/truncated SVD.
- Computational cost is high for large-scale problems.

Non-convex minimization. Let X = LR⊤ (L,R ∈ Rn×r) to avoid the
low-rank constraint:

minimize
L,R,S

1

2
∥LR⊤ + S − Y ∥2F

subject to S is α-sparse.
(3)

ScaledGD. Scaled Gradient Descent is a state-of-the-art iterative algo-
rithm for solving (3):

Lk+1 = Lk − ηk+1(LkR
⊤
k + Sk+1 − Y )Rk(R

⊤
k Rk)

−1

Rk+1 = Rk − ηk+1(LkR
⊤
k + Sk+1 − Y )⊤Lk(L

⊤
k Lk)

−1

Sk+1 = Tα̃(Y −LkR
⊤
k ),

(4)

where Tα̃ keeps the largest α̃ entries per row and per column as outliers.
- It requires a partial sorting in every row and column.
- α̃ is usually taken as 1.5α− 2α.
- It is expensive when α is relatively large.

Soft-thresholding. We propose to use a simple operator to replace Tα̃:

[Sζ(M)]i,j =

{
0, |[M ]i,j | ≤ ζ;

sign([M ]i,j)(|[M ]i,j | − ζ), otherwise.

- It’s computationally simple.
- With proper chosen thresholds ζ, it provides even faster convergence.
- Practically, such good ζ can be trained from data.

ALGORITHM AND ANALYSIS
LRPCA. We propose Learned Robust PCA:

Sk+1 = Sζk+1
(Y −LkR

⊤
k )

Lk+1 = Lk − ηk+1(LkR
⊤
k + Sk+1 − Y )Rk(R

⊤
k Rk)

−1

Rk+1 = Rk − ηk+1(LkR
⊤
k + Sk+1 − Y )⊤Lk(L

⊤
k Lk)

−1.

(5)

We prove that there exists a parameter-sequence {ζk, ηk} that guarantees
(5) converge.
Theorem 1 (Guaranteed recovery.) Suppose that X⋆ is a rank-r matrix with
µ-incoherence and S⋆ is an α-sparse matrix with α ≤ 1

104µr3/2κ
. If we set the

thresholding values ζ0 = ∥X⋆∥∞ and ζk = ∥Lk−1R
⊤
k−1−X⋆∥∞ for k ≥ 1 for

LRPCA, the iterates of LRPCA satisfy

∥LkR
⊤
k −X⋆∥F ≤ 0.03(1− 0.6η)kσr(X⋆) and supp(Sk) ⊆ supp(S⋆),

with the step sizes ηk = η ∈ [ 14 ,
8
9 ].

− guaranteed linear convergence with rate 1− 0.6η

− allow larger step sizes (ScaledGD allows step step up to 2
3 )

− The {ζk} formula is dependent on X⋆ that cannot be used directly.
We propose to use machine learning to calculate {ζk}.

− The step size {ηk} can also be learned to adapt to specific data sets.

MODEL AND TRAINING TECHNIQUES
− Unfold (K-iteration) LRPCA as a Feedforward Neural Network (FNN)

− Collect training data set Dtrain consisting of (Y ,X⋆) pairs.

− Learn the parameters Θ = {ζk, ηk}Kk=0 by fitting X⋆ with XK :

minimize
Θ

E(Y ,X⋆)∼Dtrain
∥XK(Y ,Θ)−X⋆∥2F,

where XK = LKR⊤
K is determined by Y and Θ based on (5).

The learned parameter Θ can be used on a certain type of RPCA problems
that share the distribution of the training examples.

Feedforward-Recurrent-Mixed Neural Network (FRMNN). To extend
our model to (infinite) more iterations, we concatenate a Recurrent Neu-
ral Network (RNN) after the K-layer FNN:

NUMERICAL VALIDATION
We compare our algorithm LRPCA [1] with two STOA algorithms:
ScaledGD [2] and AltProj [3].

Synthetic data. We randomly generate instances following the rules in
[4] and show runtime comparison with error bar for varying outlier spar-
sity α. Problem dimension d = 3000 and rank r = 5. All algorithms halt
when ∥Y −X − S∥F/∥Y ∥F < 10−4.
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Real data. We apply LRPCA to video background subtraction and use
VIRAT video dataset as our benchmark. Each frame of the videos is vec-
torized and become a matrix column, and all frames of a video form a
data matrix. The static backgrounds are the low-rank component of the
data matrices and moving objects can be viewed as outliers. To achieve
the same accuracy, LRPCA runs much faster than both ScaledGD and
AltProj in all verification tests:

VIDEO FRAME FRAME RUNTIME (secs)
NAME SIZE NUMBER LRPCA ScaledGD AltProj

ParkingLot1 320× 180 965 16.01 260.45 63.04
ParkingLot2 320× 180 2149 33.95 639.03 144.50
ParkingLot3 480× 270 1110 38.85 662.08 166.91

StreeView 480× 270 1034 33.73 626.05 167.66

Visualization of the “StreetView" instance:
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