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OVERVIEW
A generic learning-to-optimize (L2O) approach parameterizes the itera-
tive update rule and learns the update direction as a black-box network.
While the black-box approach is widely applicable, the learned model
can overfit and may not generalize well to out-of-distribution test sets.

We derive the basic mathematical conditions that successful update rules
commonly satisfy. Consequently, we propose a novel L2O model with
a mathematics-inspired structure that is broadly applicable and general-
ized well to out-of-distribution problems. [1]
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INTRODUCTION
What is Learning to Optimize (L2O)?
An example:

min
x∈Rn

f(x) (1)

To solve (1), one can iteratively update x using a parameterized model:

xk+1 = xk − d(xk,∇f(xk);ϕ) (2)

- In this equation, ϕ denotes the parameters to learn.
- The model d(·, ·;ϕ) can be a RNN [2] or MLP [3].

Find ϕ that optimizes its resulting trajectory {xk}:

ϕ∗ = argmin
ϕ

Ef∈F

K∑
k=1

f(xk) (3)

on a set of optimization instances F .
We hope the trained model d(·, ·;ϕ∗) results in fast convergence.

Recall the gradient descent:

xk+1 = xk − αk∇f(xk) (4)

Comparing the L2O model (2) and the conventional method (4):
- (2) covers (4).
- (2) has more tunable parameters.
The L2O model has the potential for enhanced performance.

MOTIVATIONS AND MAIN RESULTS
An observation in the literature [4]:
- Trained models sometimes fail to converge, even causing divergence
on unseen instances.

What’s the reason?
- Neural networks are universal approximators: Given any continuous op-
erator, there exists a NN that is arbitrarily close to it.
- Seeking a optimized NN (3) equals to searching over the following space

{d : R2n → Rn,d is continuous}
Such a space is too large, including undesirable operators.

Illustrative example: f(x) = (1/2)∥x∥2.
The following operators should obviously be excluded:
- Operator A: d(x, g) = g + 1. The corresponding update rule yields:

xk+1 = xk −∇f(xk) + 1 = 1

where optimal solution x∗ = 0 is NOT a fixed point of the above scheme.
- Operator B: d(x, g) = 10x. The update rule

xk+1 = −9xk

diverges almost surely, although the optimal solution is a fixed point.

Can we exclude these “bad" operators?
- Impose assumptions on (2) and derive a structured new rule.

Theorem 1 (Informal) For any convex and smooth f and any update rule
yielding (2), as long as the following two conditions hold,
- If xk is an optimal solution to f , then it holds that xk+1 = xk.
- The sequence {xk} must converge to one of the optimal solutions to f .
there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

xk+1 = xk −Pk∇f(xk)− bk, (5)

with Pk is bounded and bk → 0 as k → ∞.

Some discussions:
- A meaningful operator serving as an optimization scheme is not free.
- Instead of using neural networks to suggest the update direction, one
may using the output of NN to suggest Pk and dk.
- Ensuring boundedness: using a sigmoid function on the NN output.
- Ensuring bk → 0 is challenging; we recommend fixing bk = 0.

Extensions: Such results can be extended to (Refer to [1] for details)

min
x

f(x) + r(x)

where f is convex and smooth, r is convex and possibly nonsmooth.
Equation (5) would be extended to

xk+1 = proxr,Pk

(
yk −Pk∇f(yk)− b1,k

)
,

yk+1 = xk+1 +Ak(xk+1 − xk) + b2,k.
(6)

- With fixing b1,k = b2,k = 0, (6) reduces to a generalized FISTA.
- Instead of learning the update rule, we recommend learning precondi-
tioner Pk and accelerator Ak. (L2O-PA)

NUMERICAL VALIDATION
LSTM Parameterization. We choose diagonal Pk,Ak over full matri-
ces for efficiency. Similar to [2], we model pk and ak as the output of a
coordinate-wise LSTM, which is parameterized by learnable parameters
ϕLSTM and takes the current estimate xk and the gradient ∇f(xk) as the
input:

ok,hk =LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak =MLP(ok;ϕMLP).
(7)

Here, hk is the internal state maintained by the LSTM with h0 randomly
sampled from Gaussian distribution.

Experiment Settings. We test our proposed model (6) with experiments
on LASSO and logistic regression using both synthetic data and real data.
• For our method, we learn to predict the diagonal pk and ak with LSTM.
• For LASSO, we sample A ∈ R250×500, b ∈ R250 for the synthetic setting;

A ∈ R64×128, b ∈ R64 extracted with 1,000 8×8 patches from BSD500.
• For logistic regression, we sample A ∈ R1000×50 for the synthetic set-

ting and use Ionosphere and Spambase datasets as real data.
• Models trained on synthetic data are applied to real data directly.
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