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HIGHLIGHTS
• Combine Riemannian optimization and Robust CUR decompositions

• State-of-the-art computational complexity on Robust PCA

• Strong robustness to outliers

ROBUST PCA
Principal Component Analysis (PCA): fundamental technique for dimension
reduction, but it is very sensitive to outliers.

Robust PCA (RPCA): aims to recover a low-rank matrix L and a sparse matrix S
from their sum D = L+ S.

Non-convex optimization problem:

min
L′,S′

∥D − L′ − S′∥F subject to L′ is low-rank and S′ is sparse.

Assumptions:

A1 The underlying L ∈ Rn×n is a rank-r matrix with µ-incoherence, that is

∥U∥2,∞ ≤
√

µr/n, and ∥V ∥2,∞ ≤
√

µr/n

hold for some numerical constant µ, where L = UΣV ⊤ is the compact SVD of L.

A2 The underlying S ∈ Rn×n is α-sparse. That is, S has at most αn non-zero entries
in each row, and at most αn non-zero entries in each column.

PRELIMINARIES
CUR decompositions [1]:

Theorem: If the columns of C = L:,J span the column space of L, the rows of
R = LI,: span the row space of L, and denote U = LI,J , then L = CU†R.

Manifold and tangent space [2]: The set of low-rank matrices is indeed a Rieman-
nian manifold. The tangent space of the manifold at Lk (the estimate of L at the k–th
iteration of the algorithm below) is defined as

Tk := {WkA
⊤ +BV ⊤

k : A,B ∈ Rn×r}

where UkΣkV
⊤
k is the SVD of Lk. The projection of an arbitrary matrix X onto the

tangent space Tk has a close form

PTk
X = WkW

⊤
k X +XVkV

⊤
k −WkW

⊤
k XVkV

⊤
k .

ITERATED ROBUST CUR
IRCUR [3]: an iterative method for robust CUR decomposition.

• Main idea: Using CUR decompositions to replace the low-rank approximations
in a classic iterated RPCA framework.

• Pros: improved computational complexity—O(r2n log2 n)

• Cons: relatively low robustness

ACCELERATED ALTERNATING PROJECTIONS
AccAltProj [4]: a special case of Riemannian optimization for RPCA

• Main idea: In the framework of alternating projections, utilizing Riemannian gra-
dient descent (fixed stepsize) for the updates of low-rank component.

• Pros: very robust against outliers

• Cons: standard computational complexity—O(n2r)

RIEMANNIAN CUR
RieCur: To bridge this gap, we propose Riemannian CUR (RieCUR), which com-
bines the ideas of robust CUR decomposition and Riemannian gradient descent.

• RieCUR has the improved complexity O(r2n log2 n), which is the same as IRCUR
(although the constant appears to be slightly larger for RieCUR based on experi-
ments in the sequel).

• RieCUR appears to tolerate outliers as well as AccActProj in terms of reconstruc-
tion vs. sparsity based on our numerical experiments, whereas IRCUR degrades
as the amount of outliers increases.

Algorithm: Riemannian CUR (RieCUR) for RPCA
Initialize L0 and S0

for k = 0, 1, 2 · · · do
11 Ck+1 = (PTk

(D − Sk)):,J
11 Rk+1 = (PTk

(D − Sk))I,:
11 Uk+1 = (PTk

(D − Sk))I,J
11 Lk+1 = Ck+1U

†
k+1Rk+1

11 ζk+1 = γkζ0
11 (Sk+1):,J = Tζk+1

(D − Lk+1):,J
11 (Sk+1)I,: = Tζk+1

(D − Lk+1)I,:
end for

The main difference of RieCUR compared with IRCUR and AccAltProj:

• RieCur utilizes submatrices of the tangent space projection PTk
(D − Sk) rather

than the entire matrix as AccAltProj does, and IRCUR does not utilize the tangent
space projection at all, but rather works with submatrices of D − Sk directly.

• RieCur uses of the tangent space projection which adds a small amount of com-
putation time to IRCUR but with the benefit of making the procedure more robust
to outliers, as CUR decompositions are known to suffer from outliers.

NUMERICAL EXPERIMENTS

Synthetic data: An n × n rank-r matrix L is formed via L = PQ⊤, where P,Q ∈
Rn×r have i.i.d. N (0, 1) entries. The locations of the non-zero entries of the sparse
matrix S are sampled uniformly and independently without replacement. The k-th
iteration relative computing error is defined as ek = ∥D − Lk − Sk∥F/∥D∥F.
Speed comparisons among RieCUR (this paper), IRCUR [3] and AccAltProj [4]:
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Left: Varying dimension n vs runtime, where r = 5, α = 0.3, and n varies from 500 to
10000. Each algorithm stops once ek < 10−6 or 40 iterations has been reached Center: Varying
sparsity factor α vs runtime, where r = 5, and n = 2000. Each algorithm stops once ek < 10−3

or 100 iterations. Right:Error vs. Sparsity for the three algorithms considered. In all trials L is
2000× 2000 with rank 5. Each algorithm stops after 100 iterations.

Video background subtraction: The video we have used for this test is
restaurant. The video is black and white with 3, 055 frames of size 120 × 160.
A single data matrix of the video is obtained as follows: each frame is vectorized to
form a column vector of size 19, 200 and columns are concatenated into a data matrix
of size 19, 200× 3, 055.

(Top row) One original frame from the restaurant. (Center row) Background of the same
frame recovered from AccAltProj (left), RieCUR (center), and IRCUR (right). (Bottom row)
Foreground of the same frame recovered from AccAltProj (left), RieCUR (center), and IRCUR
(right).
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