Non-convex Approaches for Low-rank Tensor Completion under Tubal Sampling

Abstract

Tensor completion is an important problem in modern data analysis.
In this work, we investigate a specific sampling strategy, referred to as
tubal sampling. We propose two novel non-convex tensor completion
frameworks that are easy to implement, named tensor L1-L2 (TL12)
and tensor completion via CUR (TCCUR). We test the efficiency of
both methods on synthetic data and a color image inpainting problem.
Empirical results reveal a trade-off between the accuracy and time
eficiency of these two methods in a low sampling ratio. Each of them
outperforms some classical completion methods in at least one aspect.

Introduction

This paper considers a tensor completion problem when each tubal is
either sampled entirely or not sampled at all, which is referred to as
tensor tubal sampling [5], as illustrated in Fig 1 (left).
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Fig. 1: Tensor Tubal Sampling (left) and matrix CUR (right).
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Tensor, a multidimensional generalization of the matrix, is a useful
data structure that is arisen in various fields. The matrix’'s SVD can

be extended into tensors, called t-SVD |5]. Specifically for a general
tensor 7 € R™M*"2x13 the t-SVD is visualized in Fig. 2.
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Fig. 2: Tensor SVD (t-SVD).

Tensor completion is an ill-posed problem, thus requiring additional
information to be imposed as a regularization. We focus on a low-rank
structure of the desired tensor, which requires defining the tensor’s
tubal rank as follows,

Definition 1: (Tensor multi rank and tubal rank) Let A = fit(A, [], 3)
to be the Fourier transform of A along the third dimension. The tensor
multi rank of a 3-mode tensor A € R™M*™2%"3 ig 4 vector r € R"3

with its ¢-th component equal to the rank of the i-th frontal slice of
A. The tensor tubal rank of A is defined to be r = ||r||so.

Objectives of this project:

(1) Propose two novel non-convex low-rank tensor completion under
tubal sampling

(2) Draw empirical guidance in real applications.
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Tensor Low-rank Regularization

We consider a general model for low-rank tensor completion

min h(X) st. Y ="PqlX),
XERnlanXng

where h(-) is a low-rank regularization and Pg, is a sampling operator

[‘X]i,j,kﬁ if (i,j, k) c ()
0, Otherwise.

PolX)]i k= {

We propose the tensor Li-Lo (TL12) regularization,
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By defining a vector s; = (|S]; ; j)i=1.... m, the TL12 regularization is equiv-
alent to the difference between the Lj and Lo norms of s, followed by sum-
ming over j = 1,...,n3. The classic tensor nuclear norm (TNN) is defined
by [|X]|TaN = Z?i 1 8li i j- Numerically, we adopt the alternating direction

method of multipliers (ADMM) that iterates as follows,

XD = arg min{[| X - (20 — B2 st Y = Po(x)}
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where Z is an auxiliary variable, B is a Lagrangian multiplier to enforce
X = Z, p> 01is a weighting parameter, and ¢ counts the iterations. The
algorithm alternates between X satistying the data matching constraint and
promoting Z to be low-rank. The closed-form solution for X (6+1) is that
it takes the values of I on  and of Z(9) — B on the complement set
of {2. The Z-subproblem has a closed-form solution based on the proximal
operator of Li-Lg |3].

Tensor Completion via CUR

By the design of tubal sampling, we have Y = PQ(PE' ). As a result, we
can find an estimate of X by completing Y , followed by the inverse Fourier
transtform along the third dimension. Completing the tensor Y reduces to
a series of matrix completion problems, independently for each frontal slice
of ). We adopt a recently developed matrix completion method termed

iterative CUR completion (ICURC) [1]. THe matrix CUR is illustrated in
Fig 1 (right). The definition of tensor-CUR (t-CUR) is given in Definition 2.

Definition 2: (t-CUR) The t-CUR decomposition of A € R™*"2%"13 g
given by C « UT * R, where C = Al g, R = [Alr.., U = |A]r ;. with
I C[nq] and J C [nal.

Starting with X 0) = 0 and the CUR decomposition of X () =
COUUNTRE) at the £th iteration, we advance to the next step by

D e = (X pe s+ [V = Py(X D] je s,

R o= (X1 ge+ [V = Po(X )1 e,
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where I¢ = [n1]\ I and J¢ = [ny] \ J. The update of UYF) requires the
best rank r approximation, which can be achieved by truncating the largest
r singular values in the matrix SVD, denoted by H,. In short, we have

the formula, U+ = %, ([Xw)]]’J + Y — P@(X(€>>][7J) . With proper

stopping conditions, we obtain the row and column submatrices |C (”1)]17:,
[RUHY] 7, and Ho((X Y7 7).
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Synthetic Experiments

We compare the performance of the two regularizations (TNN and
TL12) and one decomposition method (TCCUR). We generate the
sampling set & C |ny| x [n9] uniformly at random under a preset
sampling ratio (without replacements) to define the index set €2. We
evaluate the performance by the relative error (RE) and peak signal-
to-noise ratio (PSNR), i.e.,

XX X5
RE = | e and PSNR = 101logy (Wf% m§X> :
X — X

where X' € R™MXM2X13 ig the recovered tensor and X is the ground
truth with its maximum absolute value, denoted by Xjax.

We generate a tensor X € R20X206X90 with tubal rank r € {3,5}.
For each preset rank, Fig. 3 shows the mean of REs over 30 random

realizations with respect to sampling ratio (SR), showing that

e TL12 and TCCUR achieve comparable and even better perfor-
mance than TNN:;

e TL12 method has the fastest decay of RE for smaller SRs (e.g.
10% — 20%).

)

~-A-=TNN ~-A-=TNN

AY
\‘
H \
1072 —-A-=TL12 102H =-A-=TL12
—e—TCCUR v —e—TCCUR

10-8 | | | | | | | |
0.1 0.15 02 025 03 035 04 045 05 0.55

10-8 | | | | | | | |
01 015 02 025 03 035 04 045 05 0.55

Fig. 3: REs of completing an underlying tensor of tubal rank 3 (left) and 5 (right) versus SRs.

We also examine the scalability of the algorithms by reporting the run-
time with respect to the tensor’s dimensions. In particular, we generate
a tensor X € R2 2" %32 with tubal rank 2 and 3 for n = 6, 7,8, 9, 10.
We randomly select 30% tubals and adopt the same stopping condition
for all the algorithms, that is, the relative error on the observed por-
tion is less than 1079, The computational time is reported in Fig. 4,
illustrating

e significant advantages in the efficiency of TCCUR over TNN and
TL12;

e TL12 is comparable in speed compared to TNN, yet gives better
completion accuracy.
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Fig. 4: Runtime versus the frontal slice dimension 2" of 2" x 2" x 32 tensors with tubal rank 2

(left) and 3 (right).

Image Inpainting Experiments

We investigate a real application of image inpainting on three

color images used in [2]. We compare the proposed methods to
two state-of-the-art methods named TRLRF [4] and PSTNN [2]

with 50% randomly sampled tubals in Table 1.
e TCCUR is significantly faster than others;

e TL12 yields the best results in all test cases both visually
and in terms of SNR, though slower than other methods

Door Hat Starfish
PSNR Time |[PSNR Time | PSNR Time
TRLRF | 30.01 5.02s | 26.55 4.54s| 23.93 13.85s
PSTNN | 28.13 13.58s| 19.38 2.34s| 16.08 4.68s
TL12 | 31.13 63.60s| 27.12 &8.59s| 25.94 22.08s
TCCUR| 28.27 4.96s | 26.37 1.22s| 24.14 4.27s

Table 1: Comparison of image inpainting from 50% tubal sampling ratio.

Fig. 5 shows the reconstruction results; PSTNN clearly fails
in filling reasonable values, while TRLRF and TCCUR produce

more severe artifacts near the rim of the hat, compared to TL12.

TRLRF PSTNN TL12 TCCUR

Fig. 5: Visual comparison of color image inpainting results.

Conclusions

e The regularization-based method (TL12) achieves high ac-
curacy in tensor completion but at a cost of high compu-
tational complexity.

e The decomposition method (TCCUR) is efficient, but its
usage is limited to tubal sampling.
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