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Abstract

Tensor completion is an important problem in modern data analysis.
In this work, we investigate a specific sampling strategy, referred to as
tubal sampling. We propose two novel non-convex tensor completion
frameworks that are easy to implement, named tensor L1-L2 (TL12)
and tensor completion via CUR (TCCUR). We test the efficiency of
both methods on synthetic data and a color image inpainting problem.
Empirical results reveal a trade-off between the accuracy and time
efficiency of these two methods in a low sampling ratio. Each of them
outperforms some classical completion methods in at least one aspect.

Introduction

This paper considers a tensor completion problem when each tubal is
either sampled entirely or not sampled at all, which is referred to as
tensor tubal sampling [5], as illustrated in Fig 1 (left).

Fig. 1: Tensor Tubal Sampling (left) and matrix CUR (right).

Tensor, a multidimensional generalization of the matrix, is a useful
data structure that is arisen in various fields. The matrix’s SVD can
be extended into tensors, called t-SVD [5]. Specifically for a general
tensor T ∈ Rn1×n2×n3, the t-SVD is visualized in Fig. 2.

Fig. 2: Tensor SVD (t-SVD).

Tensor completion is an ill-posed problem, thus requiring additional
information to be imposed as a regularization. We focus on a low-rank
structure of the desired tensor, which requires defining the tensor’s
tubal rank as follows,

Definition 1: (Tensor multi rank and tubal rank) Let Â = fft(A, [], 3)
to be the Fourier transform ofA along the third dimension. The tensor
multi rank of a 3-mode tensor A ∈ Rn1×n2×n3 is a vector r ∈ Rn3

with its i-th component equal to the rank of the i-th frontal slice of
Â. The tensor tubal rank of A is defined to be r = ∥r∥∞.

Objectives of this project:
(1) Propose two novel non-convex low-rank tensor completion under
tubal sampling
(2) Draw empirical guidance in real applications.

Tensor Low-rank Regularization

We consider a general model for low-rank tensor completion

min
X∈Rn1×n2×n3

h(X ) s.t. Y = PΩ(X ),

where h(·) is a low-rank regularization and PΩ is a sampling operator

[PΩ(X )]i,j,k :=

{
[X ]i,j,k, if (i, j, k) ∈ Ω

0, Otherwise.

We propose the tensor L1-L2 (TL12) regularization,

||X ||TL12 =
n3∑
j=1

 m∑
i=1

[S ]i,i,j −

√√√√ m∑
i=1

[S ]2i,i,j

 .

By defining a vector sj = ([S ]i,i,j)i=1,··· ,m, the TL12 regularization is equiv-
alent to the difference between the L1 and L2 norms of sj, followed by sum-
ming over j = 1, . . . , n3. The classic tensor nuclear norm (TNN) is defined
by ||X ||TNN =

∑n3
j=1 S ]i,i,j. Numerically, we adopt the alternating direction

method of multipliers (ADMM) that iterates as follows,

X (ℓ+1) = argmin
X

{||X − (Z(ℓ) − B(ℓ))||2F s.t. Y = PΩ(X )}

Z(ℓ+1) = argmin
Z

{1
ρ
h(Z) +

1

2
||Z − (X (ℓ+1) + B(ℓ))||2F}

B(ℓ+1) = B(ℓ) + (X (ℓ) −Z(ℓ+1)),

where Z is an auxiliary variable, B is a Lagrangian multiplier to enforce
X = Z , ρ > 0 is a weighting parameter, and ℓ counts the iterations. The
algorithm alternates between X satisfying the data matching constraint and
promoting Z to be low-rank. The closed-form solution for X (ℓ+1) is that
it takes the values of Y on Ω and of Z(ℓ) − B(ℓ) on the complement set
of Ω. The Z-subproblem has a closed-form solution based on the proximal
operator of L1-L2 [3].

Tensor Completion via CUR

By the design of tubal sampling, we have Ŷ = PΩ(X̂ ). As a result, we
can find an estimate of X by completing Ŷ , followed by the inverse Fourier
transform along the third dimension. Completing the tensor Ŷ reduces to
a series of matrix completion problems, independently for each frontal slice
of Ŷ . We adopt a recently developed matrix completion method termed
iterative CUR completion (ICURC) [1]. THe matrix CUR is illustrated in
Fig 1 (right). The definition of tensor-CUR (t-CUR) is given in Definition 2.

Definition 2: (t-CUR) The t-CUR decomposition of A ∈ Rn1×n2×n3 is
given by C ∗ U† ∗ R, where C = [A]:,J,:, R = [A]I,:,:, U = [A]I,J,: with
I ⊆ [n1] and J ⊆ [n2].

Starting with X(0) = 0 and the CUR decomposition of X(ℓ) =
C(ℓ)(U (ℓ))†R(ℓ) at the ℓth iteration, we advance to the next step by

[C(ℓ+1)]Ic,: = [X(ℓ)]Ic,J + [Y − PΦ(X
(ℓ))]Ic,J ,

[R(ℓ+1)]:,Jc = [X(ℓ)]I,Jc + [Y − PΦ(X
(ℓ))]I,Jc,

where Ic = [n1] \ I and Jc = [n2] \ J . The update of U (ℓ+1) requires the
best rank r approximation, which can be achieved by truncating the largest
r singular values in the matrix SVD, denoted by Hr. In short, we have

the formula, U (ℓ+1) = Hr

(
[X(ℓ)]I,J + [Y − PΦ(X

(ℓ))]I,J

)
. With proper

stopping conditions, we obtain the row and column submatrices [C(ℓ+1)]I,:,
[R(ℓ+1)]:,J , and Hr([X

(ℓ+1)]I,J ).

Synthetic Experiments

We compare the performance of the two regularizations (TNN and
TL12) and one decomposition method (TCCUR). We generate the
sampling set Φ ⊆ [n1] × [n2] uniformly at random under a preset
sampling ratio (without replacements) to define the index set Ω. We
evaluate the performance by the relative error (RE) and peak signal-
to-noise ratio (PSNR), i.e.,

RE =
∥X − X̃∥F

∥X∥F
and PSNR = 10 log10

(
n1n2n3X 2

max

∥X̃ − X∥2F

)
,

where X̃ ∈ Rn1×n2×n3 is the recovered tensor and X is the ground
truth with its maximum absolute value, denoted by Xmax.

We generate a tensor X ∈ R256×256×50 with tubal rank r ∈ {3, 5}.
For each preset rank, Fig. 3 shows the mean of REs over 30 random
realizations with respect to sampling ratio (SR), showing that

• TL12 and TCCUR achieve comparable and even better perfor-
mance than TNN;

• TL12 method has the fastest decay of RE for smaller SRs (e.g.,
10%− 20%).
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Fig. 3: REs of completing an underlying tensor of tubal rank 3 (left) and 5 (right) versus SRs.

We also examine the scalability of the algorithms by reporting the run-
time with respect to the tensor’s dimensions. In particular, we generate
a tensor X ∈ R2n×2n×32 with tubal rank 2 and 3 for n = 6, 7, 8, 9, 10.
We randomly select 30% tubals and adopt the same stopping condition
for all the algorithms, that is, the relative error on the observed por-
tion is less than 10−6. The computational time is reported in Fig. 4,
illustrating

• significant advantages in the efficiency of TCCUR over TNN and
TL12;

• TL12 is comparable in speed compared to TNN, yet gives better
completion accuracy.
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Fig. 4: Runtime versus the frontal slice dimension 2n of 2n × 2n × 32 tensors with tubal rank 2

(left) and 3 (right).

Image Inpainting Experiments

We investigate a real application of image inpainting on three
color images used in [2]. We compare the proposed methods to
two state-of-the-art methods named TRLRF [4] and PSTNN [2]
with 50% randomly sampled tubals in Table 1.

• TCCUR is significantly faster than others;

• TL12 yields the best results in all test cases both visually
and in terms of SNR, though slower than other methods

Door Hat Starfish
PSNR Time PSNR Time PSNR Time

TRLRF 30.01 5.02s 26.55 4.54s 23.93 13.85s
PSTNN 28.13 13.58s 19.38 2.34s 16.08 4.68s
TL12 31.13 63.60s 27.12 8.59s 25.94 22.08s

TCCUR 28.27 4.96s 26.37 1.22s 24.14 4.27s

Table 1: Comparison of image inpainting from 50% tubal sampling ratio.

Fig. 5 shows the reconstruction results; PSTNN clearly fails
in filling reasonable values, while TRLRF and TCCUR produce
more severe artifacts near the rim of the hat, compared to TL12.

TRLRF PSTNN TL12 TCCUR

Fig. 5: Visual comparison of color image inpainting results.

Conclusions

• The regularization-based method (TL12) achieves high ac-
curacy in tensor completion but at a cost of high compu-
tational complexity.

• The decomposition method (TCCUR) is efficient, but its
usage is limited to tubal sampling.
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