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HIGHLIGHTS

e Novel Zeroth-Order (ZO) Optimization algorithm using compressed
sensing, randomized finite differencing and block coordinate descent.

e Query and computational complexity grow sub-linearly in d.
e Convergence is theoretically guaranteed.

e Benchmark on adversarial attacks on image/audio (d > 10°).

HUGE-SCALE ZEROTH-ORDER OPTIMIZATION

Zeroth-Order Optimization. Use only noisy function queries (no gra-
dients) to find z, ~ argmin_.p« f(z). This problem arises in many do-
mains, e.g. simulation-based optimization, adversarial attacks, hyperpa-
rameter tuning and reinforcement learning. Our focus is adversarial at-
tacks: perturbing a signal to fool a (neural-network) classifier (see Fig. 1).

Figure 1: Left: Clean signal correctly labelled ‘scale’. Middle: Attack-
ing perturbation found using ZO-BCD (scaled up 50x). Right: Attacked
signal incorrectly labelled “‘switch’.

Function queries usually expensive so algorithms need to be query-efficient.

Standard Gradient Estimators.
ences to approximate V f(x):

Many ZO algorithms use finite differ-
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where § > 0, e’ is a coordinate vector and z* is a random vector. This
requires O(d) function queries to accurately approximate V f(x) [1]. For
large problems, e.g. d > 107, this is undesirable. Recent work [2], [3]
exploits compressed sensing to reduce query complexity to O(slogd) as-
suming V f(z) is s—sparse, i.e., |V f(z)|lo :=|{i : Vif(z) # 0}] < s.

The ZORO Gradient Estimator. [3] proposes the following scheme for
approximating V f(z) using Rademacher random vectors z":
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Vf(x)~ g=argmin, ga || Zv — y||2 s.t. ||v||o < s using CoSaMP [4]
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although query efficient, this is computationally intractible for large d.

Z0O0-BCD: ALGORITHM DESCRIPTION

Z0-BCD. We propose a novel algorithm, coined ZO-BCD, exhibiting
favorable query and computational complexity. Key features:

e Randomized blocks ensure approximately equi-sparse block gradients.
e ZORO gradient estimator tractable when applied to block gradients.
e Recent work [5] guarantees inexact BCD converges.

A sketch version of the algorithm is as follows:

Algorithm 1 Zeroth-Order Block Coordinate Descent (ZO-BCD)

1: forj=1,---.,m < Create sample directions
2:  2J < randvec(d) < Random vector

3: < randperm(d) < Random permutation

4: forj=1,---,J <l Create J blocks

5 aU) Tr((i—1)241) " > Tr(j4y1)] < Assign variables to blocks
6: fork=1,.--- | K < Do K iterations

7. j<+ randint({l,---,J}) < Randomly select a block
8 fori=1,---,m < Query objective function
9: VY = f(“””z;)_f(x) <1 Approximate z,' V f(x)
10: g(]) <— arg minU:H’UHoSS HZ?J — yHQ < Estimate block gradient
11:  ZTpgq < o) — gl <1 Step of BCD
12: return zg < Approximated minimizer

Decreasing the Memory Footprint. ZO-BCD stores m d-dim vectors in
memory. For large d, this may be infeasible. Thus, we also propose a
memory-efficient variant, ZO-BRD-RC. Here 2!, ..., 2™ are randomly se-
lected rows from the Rademacher Circulant matrix:
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and only z € R needs to be stored. Circulant matrices also afford a fast
multiplication: C(z) - v = F (F(z) - F~*(z)) where F and F ! denote the
(Fast) Fourier transform and its inverse.

Convergence. With the analysis of inexact block coordinate descent in
[5], CoSaMP & compressed sensing in [4], error bounds in [3], and further
analysis of randomization, we have the following theorem. Note f, =

argmin f(x) and O(-) hides logarithmic factors.

Theorem 1 Assume f is convex. Assume |V f(x)||lo < s forall x € R
Choose J < d random blocks. ZO-BCD returns v satisfying f(xg) — fr < €
using O(s/e) total queries and O(sd/J?) FLOPS per iteration with high proba-
bility. And ZO-BCD-RC returns x i satisfying f(xx) — f. < € using O (s/¢)

total queries and O(d/.J) FLOPS per iteration with high probability.

See our paper for the proof.

NUMERICAL EXPERIMENTS

Synthetic Experiments. We consider two test functions exhibiting gra-
dient sparsity: 1. Sparse quadric: f(x) = >.._, x7; 2. Max-s-squared-
sum: f(z) = > i, x5, where |[7,1)| > [T52)| > - .

Z0O-BCD matches/exceeds state-of-the-art query complexity with supe-
rior computational complexity (Fig. 2).

Figure 2: Left: Sparse quadric. Center: Max-s-squared-sum. Right: run-
time for sparse quadric.

Adversarial Attack. We use ZO-BCD for sparse wavelet transform attack:

T, = arg mxin fFAOWT(WT(z) 4+ x)) (3)

where © = clean image/audio signal, f = C-W loss function [6], WT &
IWT are fixed wavelet transform and inverse. Switching to wavelet do-
main increases problem dimension and solution quality. We consider: 1.
Image Attack. Model: ITnception-v3, trained on ImageNet. Wavelet:
‘db45’. d ~ 675,000. 2. Audio Attack. Model: commandNet, trained on
SpeechCommand dataset. Wavelet: Morse. d ~ 1, 700, 000.

Image Attack Audio Attack

METHOD ASR  ¢9 DIST  (QQUERIES METHOD ASR
/0-SCD 78% 7.5 2400 Alzantot et al, 2018  K9.0%
Z/0-SGD 78% 37.9 1590 Vadillo et al, 2019 70.4%
/0-AdaMM  81% 28.2 1720 Li et al, 2020 96.8%
ZORO 90% 21.1 2950 Xie et al, 2020 O7.8%
Z0-BCD 96% 13.7 1662 Z0-BCD 97.9%

Attack Success Rate = fraction of signals successfully perturbed within
10, 000 queries.
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