

ZO-BCD: A Zeroth-Order Block Coordinate Descent Algorithm for Huge-Scale Black-Box Optimization Yuchen Lou (U. Hong Kong) HanQin Cai (UCLA) Daniel McKenzie (UCLA)

HIGHLIGHTS

- Novel Zeroth-Order (ZO) Optimization algorithm using compressed sensing, randomized finite differencing and block coordinate descent.
- Query *and* computational complexity grow sub-linearly in *d*.
- Convergence is theoretically guaranteed.
- Benchmark on adversarial attacks on image/audio ($d > 10^6$).

HUGE-SCALE ZEROTH-ORDER OPTIMIZATION

Zeroth-Order Optimization. Use only noisy function queries (no gradients) to find $x_{\star} \approx \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$. This problem arises in many domains, *e.g.* simulation-based optimization, adversarial attacks, hyperparameter tuning and reinforcement learning. Our focus is *adversarial attacks*: perturbing a signal to fool a (neural-network) classifier (see Fig. 1).

Figure 1: Left: Clean signal correctly labelled 'scale'. Middle: Attacking perturbation found using ZO-BCD (scaled up $50 \times$). **Right:** Attacked signal incorrectly labelled 'switch'.

Function queries usually *expensive* so algorithms need to be *query-efficient*.

Standard Gradient Estimators. Many ZO algorithms use finite differences to approximate $\nabla f(x)$:

$$abla_i f(x) pprox rac{f(x + \delta e^i) - f(x)}{\delta} \quad \text{or} \quad \nabla f(x) pprox \sum_{i=1}^m rac{f(x + \delta z^i) - f(x)}{\delta} z_i$$

where $\delta > 0$, e^i is a coordinate vector and z^i is a random vector. This requires $\mathcal{O}(d)$ function queries to accurately approximate $\nabla f(x)$ [1]. For large problems, e.g. $d > 10^7$, this is undesirable. Recent work [2], [3] exploits *compressed sensing* to reduce query complexity to $O(s \log d)$ assuming $\nabla f(x)$ is *s*-sparse, *i.e.*, $\|\nabla f(x)\|_0 := |\{i : \nabla_i f(x) \neq 0\}| \le s$.

The ZORO Gradient Estimator. [3] proposes the following scheme for approximating $\nabla f(x)$ using Rademacher random vectors z^i :

$$y_{i} = \frac{f(x + \delta z^{i}) - f(x)}{\delta} \approx (z^{i})^{\top} \nabla f(x) \text{ for } i = 1, \cdots, m \approx s \log d$$
$$y = \begin{bmatrix} y_{1} & \dots & y_{m} \end{bmatrix} \text{ and } Z = \frac{1}{\sqrt{m}} \begin{bmatrix} z^{1} & \dots & z^{m} \end{bmatrix}^{\top}$$

 $\nabla f(x) \approx \hat{g} \triangleq \operatorname{argmin}_{v \in \mathbb{R}^d} \|Zv - y\|_2 \text{ s.t. } \|v\|_0 \leq s \text{ using CoSaMP [4]}$

although query efficient, this is *computationally intractible* for large d.

ZO-BCD: ALGORITHM DESCRIPTION

ZO-BCD. We propose a novel algorithm, coined ZO-BCD, exhibiting favorable query *and* computational complexity. Key features:

- Randomized blocks ensure approximately equi-sparse block gradients.
- ZORO gradient estimator tractable when applied to block gradients.
- Recent work [5] guarantees inexact BCD converges.

A sketch version of the algorithm is as follows:

Algorithm 1 Zeroth-Order Block Coordinate Descent (ZO-BCD) 1: **for** $j = 1, \dots, m$ Create sample directions 2: $z^{j} \leftarrow \operatorname{randvec}(d)$ \triangleleft Random vector 3: $\pi \leftarrow \text{randperm}(d)$ ⊲ Random permutation \lhd Create *J* blocks 4: **for** $j = 1, \dots, J$ $x^{(j)} \leftarrow [x_{\pi((j-1)\frac{d}{J}+1)}, \cdots, x_{\pi(j\frac{d}{J}+1)}]$ \lhd Assign variables to blocks 5: 6: **for** $k = 1, \cdots, K$ \lhd Do *K* iterations 7: $j \leftarrow \text{randint}(\{1, \cdots, J\})$ \lhd Randomly select a block for $i = 1, \cdots, m$ ⊲ Query objective function 8: $y_i = \frac{f(x+\delta z^i) - f(x)}{\delta}$ \triangleleft Approximate $z_i^\top \nabla f(x)$ $\hat{g}^{(j)} \leftarrow \arg\min_{v:\|v\|_0 \le s} \|Zv - y\|_2$ 11: $x_{k+1} \leftarrow x_k - \alpha \hat{g}^{(j)}$ ⊲ Step of BCD ⊲ Approximated minimizer 12: return x_K

Decreasing the Memory Footprint. ZO-BCD stores *m d*-dim vectors in memory. For large d, this may be infeasible. Thus, we also propose a memory-efficient variant, ZO-BRD-RC. Here z^1, \ldots, z^m are randomly selected rows from the **R**ademacher **C**irculant matrix:

> $\mathcal{C}(z) = \left[\begin{array}{cccc} z_{d/J} & z_1 & \cdots & z_{d/J-1} \\ \vdots & \ddots & \ddots & \vdots \end{array} \right]$ $\cdots z_{d/J}$

and only $z \in \mathbb{R}^d$ needs to be stored. Circulant matrices also afford a *fast multiplication*: $C(z) \cdot x = \mathcal{F}(\mathcal{F}(z) \cdot \mathcal{F}^{-1}(x))$ where \mathcal{F} and \mathcal{F}^{-1} denote the (Fast) Fourier transform and its inverse.

Convergence. With the analysis of inexact block coordinate descent in [5], CoSaMP & compressed sensing in [4], error bounds in [3], and further analysis of randomization, we have the following theorem. Note $f_{\star} =$ $\operatorname{argmin} f(x)$ and $\mathcal{O}(\cdot)$ hides logarithmic factors.

Theorem 1 Assume f is convex. Assume $\|\nabla f(x)\|_0 \leq s$ for all $x \in \mathbb{R}^d$. *Choose* $J \ll d$ random blocks. ZO-BCD returns x_K satisfying $f(x_K) - f_{\star} \leq \varepsilon$ using $\tilde{O}(s/\varepsilon)$ total queries and $\tilde{O}(sd/J^2)$ FLOPS per iteration with high probability. And ZO-BCD-RC returns x_K satisfying $f(x_K) - f_{\star} \leq \varepsilon$ using $\mathcal{O}(s/\varepsilon)$ total queries and $\tilde{\mathcal{O}}(d/J)$ FLOPS per iteration with high probability.

See our paper for the proof.

Wotao Yin (Alibaba US)

(2)

NUMERICAL EXPERIMENTS

Synthetic Experiments. We consider two test functions exhibiting gradient sparsity: 1. Sparse quadric: $f(x) = \sum_{i=1}^{s} x_i^2$; 2. Max-s-squaredsum: $f(x) = \sum_{i=1}^{s} x_{\sigma(i)}^2$ where $|x_{\sigma(1)}| \ge |x_{\sigma(2)}| \ge \cdots$. ZO-BCD matches/exceeds state-of-the-art query complexity with superior computational complexity (Fig. 2).

Figure 2: Left: Sparse quadric. Center: Max-s-squared-sum. Right: runtime for sparse quadric.

Adversarial Attack. We use ZO-BCD for *sparse wavelet transform attack*:

 $x_{\star} = \arg\min_{x} f(\operatorname{IWT}(\operatorname{WT}(\tilde{x}) + x))$

where $\tilde{x} = \text{clean image/audio signal}, f = \text{C-W loss function [6], WT &$ IWT are fixed wavelet transform and inverse. Switching to wavelet domain increases problem dimension *and* solution quality. We consider: **1**. **Image Attack.** Model: Inception-v3, trained on ImageNet. Wavelet: 'db45'. $d \approx 675,000$. 2. Audio Attack. Model: commandNet, trained on SpeechCommand dataset. Wavelet: Morse. $d \approx 1,700,000$.

				-
	Image	Attack		
Method	ASR	ℓ_2 dist	QUERIES	
ZO-SCD	78%	57.5	2400	
ZO-SGD	78%	37.9	1590	
ZO-AdaMM	81%	28.2	1720	
ZORO	90%	21.1	2950	
ZO-BCD	96 %	13.7	1662	

Attack Success Rate = fraction of signals successfully perturbed within 10,000 queries.

REFERENCES

- A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, "A theoretical and empirical comparison of gradient approximations in derivative-free optimization," *arXiv preprint arXiv:1905.01332, 2019.*
- Y. Wang, S. Du, S. Balakrishnan, and A. Singh, "Stochastic zeroth-order optimization in high dimensions," in International Conference on Artificial Intelligence and Statistics, 2018
- H. Cai, D. Mckenzie, W. Yin, and Z. Zhang, "Zeroth-order regularized optimization (ZORO): Approximately sparse gradients and adaptive sampling," arXiv preprint arXiv:2003.13001, 2020.
- D. Needell and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," Applied and computational harmonic analysis, 2009.
- R. Tappenden, P. Richtárik, and J. Gondzio, "Inexact coordinate descent: Complexity [5] and preconditioning," Journal of Optimization Theory and Applications, 2016.
- N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," [6] in 2017 IEEE symposium on security and privacy, IEEE, 2017.

