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HIGHLIGHTS
• Novel Zeroth-Order (ZO) Optimization algorithm using compressed

sensing, randomized finite differencing and block coordinate descent.

• Query and computational complexity grow sub-linearly in d.

• Convergence is theoretically guaranteed.

• Benchmark on adversarial attacks on image/audio (d > 106).

HUGE-SCALE ZEROTH-ORDER OPTIMIZATION
Zeroth-Order Optimization. Use only noisy function queries (no gra-
dients) to find x? ≈ argminx∈Rd f(x). This problem arises in many do-
mains, e.g. simulation-based optimization, adversarial attacks, hyperpa-
rameter tuning and reinforcement learning. Our focus is adversarial at-
tacks: perturbing a signal to fool a (neural-network) classifier (see Fig. 1).

Figure 1: Left: Clean signal correctly labelled ‘scale’. Middle: Attack-
ing perturbation found using ZO-BCD (scaled up 50×). Right: Attacked
signal incorrectly labelled ‘switch’.

Function queries usually expensive so algorithms need to be query-efficient.

Standard Gradient Estimators. Many ZO algorithms use finite differ-
ences to approximate∇f(x):

∇if(x) ≈
f(x+ δei)− f(x)

δ
or ∇f(x) ≈

m∑
i=1

f(x+ δzi)− f(x)
δ

zi (1)

where δ > 0, ei is a coordinate vector and zi is a random vector. This
requires O(d) function queries to accurately approximate ∇f(x) [1]. For
large problems, e.g. d > 107, this is undesirable. Recent work [2], [3]
exploits compressed sensing to reduce query complexity to O(s log d) as-
suming ∇f(x) is s−sparse, i.e., ‖∇f(x)‖0 := |{i : ∇if(x) 6= 0}| ≤ s.

The ZORO Gradient Estimator. [3] proposes the following scheme for
approximating ∇f(x) using Rademacher random vectors zi:

yi =
f(x+ δzi)− f(x)

δ
≈ (zi)>∇f(x) for i = 1, · · · ,m ≈ s log d

y =
[
y1 . . . ym

]
and Z =

1√
m

[
z1 . . . zm

]>
∇f(x) ≈ ĝ , argminv∈Rd ‖Zv − y‖2 s.t. ‖v‖0 ≤ s using CoSaMP [4]

although query efficient, this is computationally intractible for large d.

ZO-BCD: ALGORITHM DESCRIPTION
ZO-BCD. We propose a novel algorithm, coined ZO-BCD, exhibiting
favorable query and computational complexity. Key features:

• Randomized blocks ensure approximately equi-sparse block gradients.

• ZORO gradient estimator tractable when applied to block gradients.

• Recent work [5] guarantees inexact BCD converges.

A sketch version of the algorithm is as follows:

Algorithm 1 Zeroth-Order Block Coordinate Descent (ZO-BCD)

1: for j = 1, · · · ,m C Create sample directions
2: zj ← randvec(d) C Random vector
3: π ← randperm(d) C Random permutation
4: for j = 1, · · · , J C Create J blocks
5: x(j) ← [xπ((j−1) d

J +1), · · · , xπ(j d
J +1)] C Assign variables to blocks

6: for k = 1, · · · ,K C Do K iterations
7: j ← randint({1, · · · , J}) C Randomly select a block
8: for i = 1, · · · ,m C Query objective function
9: yi =

f(x+δzi)−f(x)
δ C Approximate z>i ∇f(x)

10: ĝ(j) ← argminv:‖v‖0≤s ‖Zv − y‖2 C Estimate block gradient
11: xk+1 ← xk − αĝ(j) C Step of BCD
12: return xK C Approximated minimizer

Decreasing the Memory Footprint. ZO-BCD stores m d-dim vectors in
memory. For large d, this may be infeasible. Thus, we also propose a
memory-efficient variant, ZO-BRD-RC. Here z1, . . . , zm are randomly se-
lected rows from the Rademacher Circulant matrix:

C(z) =


z1 z2 · · · zd/J
zd/J z1 · · · zd/J−1

...
. . . . . .

...
z2 · · · zd/J z1

 . (2)

and only z ∈ Rd needs to be stored. Circulant matrices also afford a fast
multiplication: C(z) · x = F

(
F(z) · F−1(x)

)
where F and F−1 denote the

(Fast) Fourier transform and its inverse.

Convergence. With the analysis of inexact block coordinate descent in
[5], CoSaMP & compressed sensing in [4], error bounds in [3], and further
analysis of randomization, we have the following theorem. Note f? =

argmin f(x) and Õ(·) hides logarithmic factors.

Theorem 1 Assume f is convex. Assume ‖∇f(x)‖0 ≤ s for all x ∈ Rd.
Choose J � d random blocks. ZO-BCD returns xK satisfying f(xK)− f? ≤ ε
using Õ(s/ε) total queries and Õ(sd/J2) FLOPS per iteration with high proba-
bility. And ZO-BCD-RC returns xK satisfying f(xK)− f? ≤ ε using Õ (s/ε)
total queries and Õ(d/J) FLOPS per iteration with high probability.

See our paper for the proof.

NUMERICAL EXPERIMENTS
Synthetic Experiments. We consider two test functions exhibiting gra-
dient sparsity: 1. Sparse quadric: f(x) =

∑s
i=1 x

2
i ; 2. Max-s-squared-

sum: f(x) =
∑s
i=1 x

2
σ(i) where |xσ(1)| ≥ |xσ(2)| ≥ · · · .

ZO-BCD matches/exceeds state-of-the-art query complexity with supe-
rior computational complexity (Fig. 2).
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Figure 2: Left: Sparse quadric. Center: Max-s-squared-sum. Right: run-
time for sparse quadric.

Adversarial Attack. We use ZO-BCD for sparse wavelet transform attack:

x? = argmin
x
f(IWT(WT(x̃) + x)) (3)

where x̃ = clean image/audio signal, f = C-W loss function [6], WT &
IWT are fixed wavelet transform and inverse. Switching to wavelet do-
main increases problem dimension and solution quality. We consider: 1.
Image Attack. Model: Inception-v3, trained on ImageNet. Wavelet:
‘db45’. d ≈ 675, 000. 2. Audio Attack. Model: commandNet, trained on
SpeechCommand dataset. Wavelet: Morse. d ≈ 1, 700, 000.

Attack Success Rate = fraction of signals successfully perturbed within
10, 000 queries.

REFERENCES
[1] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, “A theoretical and em-

pirical comparison of gradient approximations in derivative-free optimization,” arXiv
preprint arXiv:1905.01332, 2019.

[2] Y. Wang, S. Du, S. Balakrishnan, and A. Singh, “Stochastic zeroth-order optimization
in high dimensions,” in International Conference on Artificial Intelligence and Statistics,
2018.

[3] H. Cai, D. Mckenzie, W. Yin, and Z. Zhang, “Zeroth-order regularized optimiza-
tion (ZORO): Approximately sparse gradients and adaptive sampling,” arXiv preprint
arXiv:2003.13001, 2020.

[4] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete and
inaccurate samples,” Applied and computational harmonic analysis, 2009.

[5] R. Tappenden, P. Richtárik, and J. Gondzio, “Inexact coordinate descent: Complexity
and preconditioning,” Journal of Optimization Theory and Applications, 2016.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 IEEE symposium on security and privacy, IEEE, 2017.


