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Abstract

The number of transistors in an average processor continues to increase, but individual clock
speeds have plateaued. Those transistors are instead going into additional cores, increasing
the number of different things that a processor can do at once and placing an empha-
sis on parallel computation. Many problems in scientific computing follow a time-evolution
model, and it can be difficult to solve such problems in parallel across the temporal domain.
The Multi-Grid Reduction In Time (MGRIT) algorithm, developed at Lawrence Livermore
National Laboratory (LLNL), solves differential equations with a method designed specifi-
cally to take advantage of extreme numbers of processors by parallelizing across time. The
Tri-diagonal MGRIT (TriMGRIT) algorithm, also developed at LLNL, is a generalization
of MGRIT which enables parallel-in-time solving of a greater number of problems. Con-
strained optimization problems, in particular, may be solved in parallel using TriMGRIT.
These consist of choosing a control function such that an objective functional is minimized,
constrained by a differential-equation. We consider two such problems: applying torque to
a pendulum to bring it to a gentle stop and moving a crowd of people from one distribu-
tion into another. We also perform some miscellaneous theoretical and practical research,
including investigating the use of a line-search subroutine to refine intermediate TriMGRIT
results and preliminary work on strategies for choosing operators for TriMGRIT to use.
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Chapter 1

Introduction and Background

1.1 Introduction

Lawrence Livermore National Laboratory (LLNL) is a federal research facility with a focus
on defense, energy, intelligence, and scientific computing (especially as it pertains to these
disciplines) [2]. Within LLNL, the Center for Applied Scientific Computing (CASC) serves
as LLNL’s window to the broader computer science, computational physics, applied math-
ematics, and data science research communities [1]. CASC (directed by Dr. Jeff Hittinger)
studies extreme-scale computing throughout these fields, and parallelism, or the breakdown
of computations across multiple processors, is a keystone design feature of modern super-
computing machines. Designing algorithms which efficiently utilize ever-increasing numbers
of processors is an important facet of CASC’s work.

This summer we studied TriMGRIT, one such algorithm designed by LLNL to utilize
parallelism, and its application to constrained optimization problems. This report will for-
mally introduce the TriMGRIT algorithm and the necessary prerequisites in the remainder
of Chapter 1; show how TriMGRIT can be applied to a simple constrained optimization
problem concerning pendulum dynamics in Chapter 2; introduce spatial complexity and
apply TriMGRIT to pedestrian dynamics in Chapter 3; present analysis and modifications
to the TriMGRIT algorithm itself (in some cases with reference to analogous questions for
MGRIT) in Chapter 4; and finally summarize our work and list some potential avenues for
future progress in Chapter 5.

1.2 Background1

This project studies the performance of a new parallel-in-time integration solver for time
dependent constrained optimization problems. Unfortunately, the traditional simulation
approach of sequential time marching is becoming a bottleneck as computer architectures
increasingly rely on higher concurrency to provide greater peak performance (million-way
parallelism today, and billion-way expected on the coming exascale platforms). Researchers
have developed new parallel-in-time solution approaches to avoid this bottleneck and sig-
nificantly speed up computer simulations. These approaches solve for the full space-time
system all at once in parallel. The multigrid reduction in time (MGRIT) method and open
source software XBraid were developed at LLNL to take advantage of existing simulation

1This background material is taken and derived from the writing of R. D. Falgout.
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code bases and technologies as much as possible, allowing scientists to migrate to a parallel-
in-time simulation paradigm more easily than would otherwise be possible. Significant
advances have already been made on the development of MGRIT and other parallel-in-time
approaches, but many outstanding research questions remain. Fortunately, work in this
area has increased dramatically in the past few years.

Many computer simulations of optimization problems are time dependent; for exam-
ple, optimizing the shape of a car or an airfoil to minimize drag has a time component
to it. These applications traditionally involve sequential time marching both forward and
backward in time. Recently researchers have used MGRIT and XBraid to parallelize and
speed up the time integration component of these optimization algorithms [16]. This project
will investigate a new extension of the MGRIT solver, called TriMGRIT, that can be ap-
plied to time-dependent constrained optimization algorithms which require the solution of
a (potentially nonlinear) system that is fully coupled both forward and backward in time.
TriMGRIT provides an approach for solving these systems in parallel.

1.2.1 Parallel Time Integration with MGRIT and XBraid

The MGRIT algorithm (introduced in [13]), implemented in the open-source XBraid library
[11], is a parallel-in-time approach for solving time dependent problems that is designed to
be as non-intrusive as possible on existing codes.

Consider the basic one-step time discretization

ui = Φi(ui−1) + gi, for i = 1, 2, ..., N and u0 = g0, (1.1)

of some time-dependent process on the interval [0, T ]. Partition the time domain as in
Figure 1.1, where ti = iδt is the fine time grid and Ti = miδt is the coarse time grid for
coarsening factor m. Let ui be an approximation to u(ti). Then, considering the linear
case for simplicity, sequential time stepping is equivalent to a forward solve of the system
Au = g, 

I
−Φ1 I

. . .
. . .

−ΦN I




u0

u1
...
uN

 =


g0

g1
...
gN

 , (1.2)

where the solution u includes the state at all time points. MGRIT replaces this O(N)
sequential solve of (1.2) with an O(N) iterative method using parallel multigrid reduction
to simultaneously solve at all time points. As such, MGRIT converges to the same solution
that serial time stepping produces. Additionally, the user need only define a routine that
applies Φ, the operator that advances the solution from one step to the next, making the
method non-intrusive and allowing for reuse of serial time-stepping codes.

The concurrency in MGRIT is made possible by coarse time grids that accelerate con-
vergence to the solution on the original fine grid. Each coarse time grid is formed with an
approximate block cyclic reduction strategy that eliminates block rows and columns in the
system (1.2). If all the block rows corresponding to the points not in the coarse grid (black
points in Figure 1.1) are eliminated, then a Schur-complement system, smaller by a factor
of 1/m, would result. This coarse system is approximated by a cheaper system that has
the same form as (1.2) and uses a coarse time-stepping operator based on the larger coarse
time-step size. Often, this new operator is taken to be just a rediscretization in time.

Relaxation complements the coarse-grid corrections in MGRIT, and alternates between
block Jacobi applied to the fine-point rows in (1.2) and block Jacobi applied to the coarse-
point rows (for more information on Jacobi methods see [24]). Each relaxation sweep is a
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t0 t1 t2 t3
...
tm

T0 T1

tN

Figure 1.1: Example fine and coarse level for a coarsening factor of m = 5. Black points are present
on only the fine level, whereas red points are on both the fine and coarse level.

highly parallel process. Interpolation between time grids is done by injection. This process
is implemented in XBraid as a full approximation storage (FAS) multigrid cycle, capable of
solving nonlinear problems.

For further information on multigrid algorithms, see [26].

1.2.2 TriMGRIT

MGRIT may be viewed as an approximate block cyclic reduction approach for solving block
lower bidiagonal systems of the form given in (1.2). The approximate block cyclic reduction
idea can generally be applied to block tridiagonal systems where the system matrix A has
the form

A =


C1 −E1

−W2 C2 −E2

. . .
. . .

. . .

−WN CN

 . (1.3)

It is often convenient and useful to represent systems like the ones in (1.2) and (1.3) with
stencils. The (block) stencil for A in (1.3) is given by

A =
[
−Wi Ci −Ei

]
, (1.4)

where the index i indicates the ith block row (or ith grid block). For a short introduction
to stencils and their relationship to matrices, see [10].

Block cyclic reduction for (1.3) can be viewed as a multigrid method that uses F-
relaxation and an exact coarse-grid correction composed of so-called ideal interpolation P ,
ideal restriction R, and a Petrov-Galerkin coarse-grid operator RAP (for more information
on Petrov-Galerkin operators see [14]). The stencils for these components are

P =
]
C−1
i−1Ei−1 I C−1

i+1Wi+1

[
, (1.5)

R =
[
WiC

−1
i−1 I EiC

−1
i+1

]
, (1.6)

RAP =
[
−WiC

−1
i−1Wi−1 (Ci −WiC

−1
i−1Ei−1 − EiC−1

i+1Wi+1) −EiC−1
i+1Ei+1

]
(1.7)

where we have used the reverse square brackets ] · [ to denote a column-oriented stencil.
With these components, the two-grid method solves the problem in just one cycle. Notice,
however, that all of these components involve C−1

i which may not be practical to compute.
In addition, the center block for RAP may be difficult to invert even if Ci is easy to
invert, making it difficult to recurse to a full multilevel cyclic reduction method. Multigrid
reduction circumvents this issue by using various approximations to P , R, and RAP . This
leads to a method that is no longer exact, but when designed appropriately, converges with
O(N) work.

Having introduced TriMGRIT and the affiliate background material, in the next Chap-
ter we introduce the first constrained optimization problem we solve using TriMGRIT,
concerning the motion of a pendulum.
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Chapter 2

A Pendulum Problem

We begin our exploration of TriMGRIT by solving a non-trivial but straightforward prob-
lem in Newtonian mechanics. This demonstrates the power of the method, and our notes
function as a kind of user’s guide for the mathematics behind the algorithm.

2.1 Problem Definition

Say we have a hanging pendulum with angle θ(t) at time t. We apply a torque α(t). This
gives us equations of motion {

θ̈(t) + λθ̇(t) + ω2θ(t) = α(t)

θ(0) = θin, θ̇(0) = θ̇in

for constants θin, θ̇in. These equations contain some second derivatives. Although we can
discretize to approximate second derivatives directly, we will use only first derivatives and
consequently rewrite these equations as:

θ̇1(t) = θ2(t)

θ̇2(t) = α(t)− λθ2(t)− ω2θ1(t)

θ1(0) = θin, θ2(0) = θ̇in

where we are using two subscripted functions, θ1 and θ2, to denote θ and θ̇ respectively. We
would like to choose a torque function to minimize the total amount of “swinging” that the
pendulum does over the first second of its lifetime. In particular, we would like to minimize

J (θ, α) =

∫ 1

0
θ1(t)2 + θ2(t)2 + γα(t)2dt (2.1)

for a fixed small γ. The purpose of this final γα(t)2 term is to keep the solver from simply
applying infinite force to the pendulum to control its movement exactly.

2.2 Preparing for TriMGRIT

Begin by discretizing in time. Let ti be timestep i ∈ [0, N ] ∩ Z, and let θij ≈ θj(t
i). Define

αi similarly.
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Now discretize the derivatives. From the first constraint, we know that
θi+1
1 −θi1
δt = θi2,

or θi+1
1 = θi1 + δtθi2. Similarly,

θi+1
2 −θi2
δt = −λθi2 − ω2θi1 + αi, which rearranges to θi+1

2 =
(1− δtλ)θi2 − δtω2θi1 + δtαi. We can rewrite this as(

θi+1
1

θi+1
2

)
= Φ

(
θi1
θi2

)
+ dαi (2.2)

where Φ =

(
1 δt

−ω2δt 1− λδt

)
and d =

(
0
δt

)
. The discrete initial value problem is equiva-

lent to 
I
−Φ I

. . .
. . .

−Φ I


︸ ︷︷ ︸

=:L

 θ1

...
θN

−
d . . .

d


︸ ︷︷ ︸

=:D

 α0

...
αN−1

 =


Φθin

0
...
0


︸ ︷︷ ︸

=:g

. (2.3)

We can approximate the objective function J given in Equation (2.1) by the Riemann

sum J(θ, α) =
∑N

i=0 δtθ
i
1

2
+ δtθ

i
2

2
+ γδtα

i2.
The Lagrangian of this system is given by L(θ, α, w) = J(θ, α) + wT (Lθ − Dα − g).

Taking gradients with respect to θ, α, and w gives us the following Karush-Kuhn-Tucker
(KKT) equations:

2δtθ + LTw = 0 (2.4)

2γδtα−Dtw = 0 (2.5)

Lθ −Dα− g = 0. (2.6)

Hence, we want to solve the following KKT system:2δtI2N 0 LT

0 2γδtIN −DT

L −D 0

θα
w

 =

0
0
g

 . (2.7)

To solve this system, we transform using the Schur complement before applying TriMGRIT.
For more information on KKT equations, see [3].

2.2.1 The Schur Complement

To simplify this block system, we solve for the vector w using a Schur complement method.
If we perform the matrix multiplication in Equation (2.7) we find

2δtI2Nθ + LTw = 0 (2.8)

2γδtINα−DTw = 0 (2.9)

Lθ −Dα = g (2.10)

and if we solve the rows one and two for θ, α respectively, before substituting into row
three, we find that w is given by

−
(

1

2δt
LLT +

1

2γδt
DDT

)
w = g. (2.11)
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This algebraic manipulation, generally, is known as the block Schur-complement method
(for more information, see [30]). The stencil for this equation is[

− 1

2δt
Φ

(
1

2δt

(
I + ΦΦT

)
+

1

2γδt
ddT

)
− 1

2δt
ΦT

]
. (2.12)

For reference, we can expand the center coefficients to find

1

2δt

(
I +

(
1 δt

−ω2δt (1− λδt)

)(
1 −ω2δt
δt (1− λδt)

))
+

1

2γδt

(
0 0
0 δt2

)
. (2.13)

Equation (2.11) is a tridiagonal system, so we can solve it (parallel in time) with TriMGRIT.
Once we do this and obtain a value for w, we can find return and find θ and α using the
equations

θ = − 1

2δt
LTw (2.14)

α =
1

2γδt
DTw. (2.15)

TriMGRIT will take a tridiagonal equation of the form Ax = b and attempt to solve for
x. This requires writing two functions: triResidual(), which calculates a single component
of Ax′− b for some x′, and triSolve(), which approximately solves for a single component
of Ax = b. Both of these are passed the values of the components before and after the one
being solved for. In this case, that means that triSolve() is given values for wi−1 and
wi+1 and must estimate wi, assuming that those two values are satisfactory. This can in
fact be done exactly in this case, since we can invert Φ.

This completes the example of how one might solve a rather simple constrained op-
timization problem using TriMGRIT. In the next section, we increase the complexity by
adding a spatial dimension.

2.3 Remarks

Using this conversion of the problem into a tridiagonal system, we were able to simulate
the pendulum system for reasonable parameters, as long as not too many multigrid levels
are used. For more information about where to find and run the code, see Section 4.5.
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Chapter 3

A Crowd Control Problem

We proceed to a much more difficult and useful class of problems.

3.1 Pedestrian Movement Models

Pedestrian crowds are composed of large numbers of individual agents, each making deci-
sions about their own movement according to their perception of the world around them.
Unfortunately mathematical models containing such a level of individual details can be pro-
hibitively difficult to analyze directly. One alternative is mean field analysis, which converts
governing equations on motions of individuals, X(t), into mass transport problems, using
ρ(x, t) a crowd density function [19, 29]. Intuitively, ρ(x, t) = 0 means that the space x and
its immediate surroundings are empty at time t and ρ(x, t) = 1 means that point x is fully
saturated at time t. “Immediate surroundings” here refer to surroundings so immediate
that they are several orders of magnitude smaller than the finest grid that our solver uses.
We use the phrase only so that ρ can justifiably take values other than 0 and 1.

We similarly define v(x, t) to be the average velocity of the crowd at point x and time t.
We can then define the momentum m = ρv, motivated by considering ρ to be proportional
to the mass of the crowd near x at t.

This gives the fundamental constraint of crowd modelling problems:

∂ρ

∂t
= −∇x ·m. (3.1)

This equation encodes the conservation of momentum. We may now set boundaries and
objectives with these constraints.

There are two fundamental types of crowd problems, escape and transport, and both
are equally amenable to TriMGRIT.

3.1.1 Escape Problems

The first canonical class are escape problems, where a space with initial density distribution
ρ0 is emptied as quickly as possible, is known as an escape problem. We theoretically derived
a TriMGRIT system for, but did not have time to practically implement, an escape problem
as formulated in [4]. The original paper considers two spatial dimensions; for simplicity, we
consider only one. The objective function to clear a crowd as quickly as possible can be
defined as

IT (ρ, v) =
1

2

∫ T

0

∫
Ω
F (ρ)|v(x, t)|2+E(ρ) dx dt (3.2)
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subject to the PDE constraint

∂tρ+∇ · (G(ρ)v) =
σ2

2
∆ρ ρ(x, 0) = ρ0(x) (3.3)

with

• F = ρ is the cost of moving through a crowd of density ρ

• G = ρ corresponds to nonlinear mobilities of a person moving through the crows

• E = ρ2 is a cost function which penalizes regions of very high density to actively
avoid jams

These functions can be adjusted depending on the specific crowds being studied; for ex-
amples from biology or physics see [5, 6, 9, 22, 25]. We would like to formulate the
problem in terms of momentum rather than velocity, so we define the flux density by
j(x, t) = G(ρ(x, t))v(x, t).

In order to “move” the nonlinearity out of the objective function and into the constraints,
we define w =

√
F (ρ)v and K =

√
F . Then the objective function is

JT (ρ, w) =
1

2

∫ T

0

∫
Ω
|w|2+E(ρ)

with constraint

∂tρ =
σ2

2
∆ρ−∇ · (K(ρ)w).

While we are given initial values ρ(x, 0), we are also given boundary conditions repre-
senting the maximum amount of people that can leave through the boundary exits at time
t. These boundary conditions are

−σ
2

2
∇ρ+ j = 0

which, using our previously defined j value, is

−σ
2

2
∆ρ+

G(ρ)

K(ρ)
w = 0.

Let i be the last point in space at which the value of ρ is allowed to vary. We wish to
determine the value of ρ at i+ 1, that is, the boundary condition, and do the same for w.
To solve for our final ρ and w boundary values, ρi+1 and wi+1, we discretize the boundary
condition forward in space and solve for ρi+1. Then we discretize backwards in space to
solve for wi+1 with the recently computed ρi+1.

Similarly, given vectors ρ1, . . . , ρn and w1, . . . , wn, we might want to find boundary
conditions w0 and ρ0. We omit the algebraic details, but the boundaries are solved similarly
with ρ0 calculated first then used in the computation to get w0.

After determining the boundaries, the discretized objective function we find by inte-
grating over 0 ≤ t ≤ 1 is

J(ρ, w) =

n∑
i=1

m∑
j=1

(wij
2

+ ρij
2
)∆x∆t.
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As in the pendulum problem, we take the Lagrangian of the above objective function and
derive the following KKT equations

ρi∆x∆t+ zi − Szi+1 = 0

wi∆x∆t−Rzi+1 = 0

ρi − Φ(ρi−1, wi−1) = 0.

Given values for ρ and w at time i − 1, and for z at time i + 1, this system could in
theory be solved exactly for ρi, wi, and zi. As stated earlier, we did not have the time to
implement this and consequently moved on to other problems.

3.1.2 Transport Problems

Many scenarios arise where crowds of something, whether it be fluids, masses, or even
people, need to be transported from distribution µ0 to position µ1. In a transport, or
Monge-Kantorovich, problem, we are given values for ρ(x, 0) ∀x and ρ(x, T ) ∀x for some
final time T , representing initial and final configurations for the crowd. There may or
may not be initial conditions for m; in the systems which we modeled, there were none.
Boundary conditions for m in such problems need not exist.

We focused on the transport problem in [17] with the goals of implementing TriMGRIT
and acheiving convergence. The authors, Haber and Horesh, set T = 1 with grid domain Ω
and define the problem

min f(m, ρ) =

∫ 1

t=0

∫
Ω

|m(x, t)|2

ρ(x, t)
dxdt (3.4)

s.t. c(m, ρ) = ρt +∇ ·m = 0

where ρt = ∂ρ
∂t , ρ(x, 0) = µ0, and ρ(x, 1) = µ1. Haber and Horesh use a staggered-grid

discretization scheme, staggering ρ in time and m in space. In our case, for a grid system
with s space steps and t time steps, ρ has points at (i, j + 1/2) for 1 ≤ i ≤ s and 0 ≤ j ≤ t,
while m has points at (i + 1/2, j) for 0 ≤ i ≤ s and 1 ≤ j ≤ t. Crucial to this scheme are
the matrices As and At which average in space and time respectively to give an s× t grid.

After deriving the discrete form of Equation (3.4), we must (as in our analysis of the
forced pendulum) devise a way to solve for the optimal functions m, ρ. TriMGRIT offers
two ways to solve this problem. The slightly more ambitious is simply to calculate the
Lagrangian in terms of m, ρ, and weights λ. This is a nonlinear function, but we can use
Newton’s method to approximately calculate solutions in the triSolve() function. Ideally,
we would plug this into TriMGRIT and solve it in one go.

The second method provided is based on sequential quadratic programming (SQP) [21].
As before, we first calculate the Lagrangian L. We can then start with an estimated ρ, m,
and λ and solve a system of equations

A

δmδρ
δλ

 = −

∇mL∇ρL
∇λL


where the matrix A is a linear approximation of the Karush-Kuhn-Tucker equations for L.
We then set λ = λ+ αδλ and similarly for m and ρ, where the parameter α is determined
by a line search algorithm. Haber and Horesh utilized a spatial multigrid algorithm to solve
this system and found that this method converges quickly.
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In order to investigate the idea of using TriMGRIT as only a component of a larger
algorithm, we chose the second approach. We were able to reproduce similar results in a
one-dimensional setting.

3.2 Haber and Horesh’s Crowd Model

We consider the one-dimensional version of Haber and Horesh’s [17] problem, with derivative
matrices D1 in space and D2 in time, momentum m, and density ρ. The Lagrangian is

L = (Asm
2)(At(1/ρ))− λ>(D

[
m>, ρ>

]
− q) (3.5)

where

q =
1

dt

µ>0 , 0, 0, . . . , 0︸ ︷︷ ︸
s(t−1)

, µ>1


>

(3.6)

D =
[
D1 D2

]
, and the square and inverse operations onm and ρ respectively are performed

componentwise. Our goal was apply a SQP method by solving Equation (4.2) from the paper(
Â D>

D 0

)(
δw
δλ

)
= −

(
∇wL
∇λL

)
(3.7)

and then choosing, using line search, a real value α so that the new solution given by

w ← w + αδw (3.8)

λ← λ+ αδλ (3.9)

minimizes the residual in Equation (3.4). Expanding the first row, we can write Equation
(3.7) as

(3.10)

2 diag(A>s At(1/ρ)) 0 D>1
0 2 diag(A>t As(m

2)) diag(1/ρ3) D>2
D1 D2 0

δmδρ
δλ

 = −

∇mL∇ρL
∇λL


where, again, the inversion and exponentiation operators are applied componentwise.

We have discretized on a grid with s points in space and t in time, with a distance
between space points of ds and a distance between time points of dt. Note that in this case
ρ has s(t+ 1) points and m has (s+ 1)t.

3.2.1 Solving the Whole System

Our initial thought was to develop a Schur complement to solve this problem as a simple
linear TriMGRIT system; however, there are many cases in which m can be zero. For
instance, if a single clump of people in the middle of the crowd splits into two, the total
velocity would be zero at the center of the clump leading 2 diag(A>t As(m

2)) diag(1/ρ3) to
be singular. (Note that the size of 1/ρ3 is the same as that of dim ρ since the operations
are componentwise.)

Instead, we aim to solve the system by, rather than finding δλ first, simply finding δm,
δρ, and δλ all at the same time. All the individual blocks in the block matrix that makes up
our system of equations are tridiagonal: two are diagonal, three are zero, and the remainder
are derivative matrices.
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The System to Solve

Define

K =
1

dx


−1 1

−1 1
−1 1

. . .
. . .

−1 1

 ∈ Rs×(s+1). (3.11)

Define also

X =


1/4
1/4 1/4

1/4 1/4
. . .

. . .

1/4 1/4

 ∈ R(s+1)×s. (3.12)

Then A>s At =
[
0 X X

]
and A>t As =

[
X> X> 0

]
. We may then derive the coefficient

matrix Pi of δmi from the top left block of Equation (3.10), and the coefficient matrix Qi
of δρi from the central block:

Pi = 2 diag(X(1/ρi + 1/ρi+1)) (3.13)

Qi = 2 diag(X>(m2
i +m2

i−1)) diag(1/ρ3
i ) (3.14)

where m0 and mn+1 are taken to be 0.
We rewrite Equation (3.10) from above as the following system:

Piδmi +K>δλi = −∇mi 1 ≤ i ≤ n (3.15)

Qiδρi−1/2 +
1

dt
δλi−1 −

1

dt
δλi = −∇ρi−1/2

1 ≤ i ≤ n+ 1 (3.16)

1

dt
δρ1/2 = −∇λ0 (3.17)

− 1

dt
δρn+1/2 = −∇λn+1 (3.18)

Kδmi +
1

dt
δρi+1/2 −

1

dt
δρi−1/2 = −∇λi 1 ≤ i ≤ n (3.19)

Define the n + 2 “vectors” v0, . . . , vn+1. Each vi contains a δρi−1/2, a δmi, and a δλi,
except for v0 which contains only δλ0 and vn+1 which contains only δρn+1/2 and δλn+1.
The vectors v0 and vn+1 correspond to the boundaries of the staggered grid utilized in this
problem. Each vi also has a system of equations associated with it, which will of course
draw on values at vi−1 and vi+1.

From now on, when we write ρi, it will be referring to the ρ that is part of vi, which is
more properly written ρi−1/2.

Vectors v1 through vn are governed by the equations

Piδmi +K>δλi = −∇mi (3.20)

Qiδρi +
1

dt
δλi−1 −

1

dt
δλi = −∇ρi (3.21)

Kδmi +
1

dt
δρi+1 −

1

dt
δρi = −∇λi (3.22)
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Vectors v1 and v0 are also governed (in the case of v0, completely governed) by

1

dt
δρ1 = −∇λ0 (3.23)

Q1δρ1 +
1

dt
δλ0 −

1

dt
δλ1 = −∇ρ1 (3.24)

Vector vn+1 is completely governed by

− 1

dt
δρn+1 = −∇λn+1 (3.25)

Qn+1δρn+1 +
1

dt
δλn −

1

dt
δλn+1 = −∇ρn+1 (3.26)

Solving for λi in vi

Recall the equations that govern vi for 1 ≤ i ≤ n:

Piδmi +K>δλi = −∇mi

Qiδρi +
1

dt
δλi−1 −

1

dt
δλi = −∇ρi

Kδmi +
1

dt
δρi+1 −

1

dt
δρi = −∇λi

We may invert Pi, since ρ is never 0. Let us therefore do it, to get

δmi + P−1
i K>δλi = −P−1

i ∇mi (3.27)

We substitute this into the final equation, to get

1

dt
δρi = K(−P−1

i K>δλi − P−1
i ∇mi) +

1

dt
δρi+1 +∇λi (3.28)

We finally substitute this into the second equation, to see

(3.29)dtQi(K(−P−1
i K>δλi − P−1

i ∇mi) +
1

dt
δρi+1 +∇λi) +

1

dt
δλi−1 −

1

dt
δλi = −∇ρi

which simplifies into

(3.30)(−dtQiKP−1
i K>− 1

dt
I)δλi = dtQiKP

−1
i ∇mi −Qiδρi+1−dtQi∇λi −

1

dt
δλi−1−∇ρi

Practicalities

In practice, this system was complicated to code and did not converge to a solution. The
solutions may have had constant convergence rates, but these were too close to 1 and the
algorithm was consistently terminated by hitting the max number of iterations before an
acceptable error tolerance was achieved. We thought there may have been a subtle error in
our code, and abandoned this scheme as being altogether too conducive to subtle errors in
general.
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3.2.2 A New Approach: The Regularized Schur Complement

Haber and Horesh solve Equation (3.10) using the Schur complement technique which we
introduced previously; the Schur complement here is given by S = −DÂ−1D>. We would
like to invert this using TriMGRIT. To calculate it, first note that

S = −
[
D1 D2

](P−1

Q−1

)[
D>1
D>2

]
= −D1P

−1D>1 −D2Q
−1D>2 . (3.31)

We can consider both of these terms separately, getting

(3.32)D1P
−1D>1 =



0

0 KP−1
1 K>

0 0 KP−1
2 K>

. . .

KP−1
n K> 0

0


and

(3.33)D2Q
−1D>2 =

1

dt2



Q−1
1 −Q−1

1

−Q−1
1 Q−1

1 +Q−1
2 −Q−1

2

−Q−1
2 Q−1

2 +Q−1
3 −Q−1

3
. . .

−Q−1
n Q−1

n +Q−1
n+1 −Q−1

n+1

−Q−1
n+1 Q−1

n+1


.

This finally gives us our Schur complement. Since Pi and Qi are diagonal, their inverses
can easily be found.

Adding a Regularization Parameter

As described above, Qi can be ill-conditioned as mi approaches 0. To counteract this, we
add a regularization parameter 1

2αkρ
2 to the objective function. We can now write it as∫

m2

ρ + 1
2αkρ

2 dx dt, where αk decreases with each iteration k and approaches 0. (We
normally start with α1 = 0.0001 and αk+1 = αk/2. We start with this parameter value as
an overly-large αk leaves us with a problem very different to the one we actually want to
solve.) We approximate the new objective function by h3((Asm

2)(At(1/ρ)) + 1
2αk||ρ

2||1).
Immediately, we see that ∇ρL = −RA>t As(m2) +D>2 λ+ αkρ.

We must also alter the matrix Qi, replacing it with the regularized matrix Q̃i = Qi+αkI
with I as the identity matrix. We would like this matrix to be invertible, and, in fact, it is,
as long as none of the elements of Qi are equal to −αk at iteration k (remember that Qi is
diagonal). Since Qi is finite, we can always find an αk ≤ 1

2αk−1 such that this is true. In
practice, we found we did not need to worry about the exact value of αk in this way: the
chances of some diagonal element of Qi taking on any given exact nonzero value are very
low compared to the chances of some such element being zero.

With our new Q̃i and our new ∇ρL, our system converged even in the case that the
solution had m = 0 everywhere, previously the worst-case scenario.
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3.2.3 Remarks

We ran three different simulations, each of which ran for three distinct solve setups: a
normal solve of the system without TriMGRIT or a preconditioner, a TriMGRIT solve
with a preconditioner, and a TriMGRIT solve without a preconditioner. Curiously, when
comparing the values of the runs with and without a preconditioner, the values of ρ from
the two runs differ by almost 0.2 in some cases. This calls into question the accuracy and
reliability of the solutions. In real world applications, differences that large in solution
values could mean success or failure in projects, or, in our case, an unanticipated (and
unwelcomed) density of people. It is possible that increasing the total number of iterations
may lead to a more exact result.

We visualized the ρ output of the three runs and the respective contour plots, as shown
in Figures 3.1-3.3. While all three have the same general shape, we find that the solve that
uses TriMGRIT without the preconditioner (Figure 3.2) introduces some oscillatory errors
in the temporal dimension.

Figure 3.1: Visualization (left) and contour (right) graph of a non-preconditioned simple solve of
the Haber and Horesh crowd model
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Figure 3.2: Visualization (left) and contour (right) graph of a non-preconditioned TriMGRIT solve
of the Haber and Horesh crowd model

Figure 3.3: Visualization (left) and contour (right) graph of a preconditioned TriMGRIT solve of
the Haber and Horesh crowd model

Speed of Convergence

Although most of our tests were done on our own computers, we were able to use LLNL’s
Quartz cluster to scale up to 36 parallel tasks at once without issues. This was appreciably
faster: on one thread of an Intel i7-8550U, capable of Turbo Boost up to 4.0GHz, solving
a system with 100 points in space, 100 points in time, 400 fine relaxations, 400 coarse
relaxations, and exactly one coarse grid required 37.7 seconds to complete the first five
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iterations. Parallelized into 36 processes running on Intel Xeon E5-2695 v4 (36 threads @
2.1GHz), the same operation took 1.7 seconds.

While using more than one coarse grid could have sped up convergence dramatically,
in practice our implementation diverged as soon as we added in a second coarsening. This
was a common pattern in the TriMGRIT code we wrote.

Restricting depth to two grids, using the results from one of the supercomputer runs,
we calculated the convergence ratios. The i-th convergence ratio ci is defined as the norm
of the residual ri divided by that of the residual ri−1. (As a matter of convenience, we set
c0 = 1.) Plotting 1− ci for the first 3000 convergence ratios on a log-log chart gives Figure
3.4.

Figure 3.4: Log-log graphs of 1−ci against i from different runs of TriMGRIT trying to solve similar
problems. Larger convergence ratios are better.

On the left, after holding fairly steady for the first few iterations, the convergence ratio
slopes down at a fairly constant slope of −1. On a log-log plot, this implies that ci ∝ 1−i−1.
This is by no means a universal law: on the right, we see a situation where the convergence
ratio has some sharp increases but, outside of those, holds fairly steady.

This concludes the practical work we did on solving problems in TriMGRIT. We now
turn to more general contributions to the algorithm itself.
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Chapter 4

Miscellaneous Theoretical Research
and Practical Contributions

In this chapter we summarize a number of topics which do not fit neatly into other sections
of the paper. In Sections 4.1 and 4.2 we examine the way that the actual and ideal coarse-
grid operators, both in MGRIT and TriMGRIT. In Section 4.3 we describe a combination
of Tri/MGRIT and a line search routine, and in Sections 4.4 and 4.5 we summarize our
progress in implementing the methods described throughout this report.

4.1 Rescaling and Coarse-Grid Operators

Given a (α, β) ∈ R2 pair, we consider the constrained optimization problem

min
u,v

1

2

∫ T

0
βu2 + αv2dt

subject to the constraints u′ = v and u(0) = u0. Following all of the algebraic techniques
used above, the ideal coarse grid operator for this problem is the same as the rediscretized
coarse grid operator for the closely related problem of

min
u,v

1

2

∫ T

0
β∆u

2 + α∆v
2dt

for α∆ = 4χ+2γ
4χ+γ α = 4+2βγ

4+βγ α and β∆ = 2χ+γ
2χ2 = 2+βγ

2 β. We use the same convention as

before, that γ = ∆t2

α , and introduce χ = 1
β .

Our interest is in a geometric interpretation for these transformations. To solve a
problem of this sort (finding a solution to a tridiagonal matrix equation), our relaxation
operator ARAP (recall from Chapter 1) is given by a block cyclic reduction process. We
start with three equations of the form

−Wi−1xi−2 + Ci−1xi−1 − Ei−1xi = 0 (4.1)

−Wixi−1 + Cixi − Eixi+1 = 0 (4.2)

−Wi+1xi + Ci+1xi+1 − Ei+1xi+2 = 0. (4.3)

We wish to eliminate xi−1 and xi+1, which corresponds to an exact coarsening onto a grid
which does not contain xi−1 or xi+1. Normally, this is done by multiplying the first equation
through by WiC

−1
i−1 and the bottom one through by EiC

−1
i+1, and adding all three together.

This exactly Equation (1.7). We can make two key assumptions here:
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1. W , C, and E are in fact independent of i.

2. W = E.

We can now rewrite our equations as

−Wxi−2 + Cxi−1 −Wxi = 0 (4.4)

−Wxi−1 + Cxi −Wxi+1 = 0 (4.5)

−Wxi + Cxi+1 −Wxi+2 = 0. (4.6)

We can solve this by multiplying the central equation by CW−1 and adding all three equa-
tions together to give the exact coarse-grid operator ACW =

[
−W CW−1C − 2W −W

]
.

In the context of this particular problem, we set W = E = 1
β and C = 2

β + γ. This

gives A∆ = 1
∆t

[
− 1
β

2
β + 4γ − 1

β

]
and ACW = 1

∆t

[
− 1
β

2
β + 4γ + γ2β − 1

β

]
. Since γ2 is

on the order of (∆t)4, it is not unreasonable to call A∆ an approximation to ACW .
We note that ACW looks nothing like ARAP . However, if we take Equation (1.7) and

make the substitutions from earlier, we see

ARAP =
[
−WC−1W C − 2WC−1W WC−1W

]
which, if we multiply every element on the right by W−1C, is ACW exactly. This will be
important later.

We now wish to calculate some α∆ and β∆ such that, when we calculate A∆ with α∆

and β∆, we get ACW . By comparing the outer elements of the two stencils, we see that
β∆ = β. This leaves the inner ones, from which we get

4γ∆ = 4γ + γ2β

4
∆t2

α∆
= 4γ + γ2β

α∆ =
4γ

4γ + γ2β
α.

In this form, it becomes much easier to see what α∆ is actually doing: it is adding a γ2-order
correction, so that, even after the approximation process that generates A∆ from ACW , such
a correction is still there.

This determines α∆ = 4
4γ+γ2β

γα and β∆ = β. These do not look like what we were

expecting: we wanted α∆ = 4+2βγ
4γ+γ2β

γα and β∆ = 2+βγ
2 β. However, remember that, to get

from ARAP to ACW , we had to multiply through by W−1C = 2 + βγ. If we multiply our
new α∆ and β∆ by this expression, and then divide through by 2, we get exactly the α∆

and β∆ we wanted.
We are allowed to do this sort of multiplication because all it is doing is going from an

equation of the form Ax = 0 to one of the form λAx = 0 for some scalar λ.
We thereby motivate the study of the transformation α 7→ 4

4+∆t2β/α
α or, rearranging,

α 7→ 4α2

4α+∆t2β
. As ∆t approaches 0, this approaches α as we would expect. Moreover, as

∆t grows, the discontinuity at α = β = 0, which disappears in the limit, becomes more
pronounced. Running

Manipulate[

Plot3D[4 a^2/(4 a + dt^2*b), {a, -10, 10}, {b, -10, 10}], {dt, 0, 5}]

in Mathematica will produce a good visualization, as in Figure 4.1.
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Figure 4.1: Example output from Mathematica code, plotting the form of the transformation from
α and β to the α with estimated coarse-grid operator equal to the exact coarse-grid operator of the
original α.

4.1.1 A More General Alternative Block Cyclic Reduction

We return to our most general tridiagonal equations, this time assuming only that they do
not vary with i:

−Wxi−2 + Cxi−1 − Exi = 0 (4.7)

−Wxi−1 + Cxi − Exi+1 = 0 (4.8)

−Wxi + Cxi+1 − Exi+2 = 0. (4.9)

Once again, we wish to eliminate xi−1 and xi+1. However, this time, we begin by multiplying
the second one on the left by CW−1 and adding the first two, to get

−Wxi−2 + (CW−1C − E)xi − CW−1Exi+1 = 0. (4.10)

We then multiply the third one on the right by W−1E and add it to our most recent equation
to get

−Wxi−2 + (CW−1C − 2E)xi − EW−1Exi+2 = 0, (4.11)

which gives us an exact coarse-grid operator

(4.12)AECW =
[
−W CW−1C − 2E EW−1E

]
.

If C−1 is difficult to calculate, we can use W−1 (or, with a similar approach, E−1) in
our coarse-grid operators instead. This also allows for the possibility of better estimated
coarse-grid operators, by approximating W−1, which is often easier than approximating
C−1.
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Furthermore, this method can be used to allow for exact coarse-grid operators to be
generated even in certain nonlinear situations. Consider the differential equation ut =
ux +N(u), where N is a nonlinear operator on u that contains no derivatives – that is, its
discretization in any scheme is just N(uij). We can discretize this into a “matrix” (really a
nonlinear operator on the discretized u) where N is only in the central part. Then, following
a similar method to that in chapter 5 of the 2019 LLNL/RIPS report [12], we may split
that matrix into two, one linear and one nonlinear, and invert only the linear portion.

4.2 Optimizing the Choice of Coarse-Grid Opera-

tor

We have been interested in improving the choice A∆ of coarse grid operator, to one more
closely mirroring the action of ARAP the ideal. Of course in the extreme case that A∆ =
ARAP we perform an exact solve and the algorithm converges in a single step. Unfortunately
this is prohibitively costly in computation and we must settle with a close guess, often a
rediscretization of the problem onto the coarse grid. We initially began by following the
line of thought in [7], which studies this process for MGRIT. That paper begins by citing
the result shown in [8] and [18]: the error developed in a single iteration of MGRIT may
be estimated using the difference in eigenvalues between the ideal coarse grid operator and
the one used in practice. The bound becomes weaker (and therefore a better approximation
is desired) as these eigenvalues approach 1 in modulus. Fortunately the matrices involved
are often circulant, so their eigenvalues are easily accessible through the Discrete Fourier
Transform, and the authors designed a simple weighted optimization problem which allowed
numerical discovery of a strong approximation to the ideal coarse operator. We have done
a few experiments to find the weight function which gives the absolute best coarse grid
operator (in particular running a gradient descent algorithm across a discretized weight
function), but have not come across any particular improvements.

We are investigating to what extent these results can be lifted to TriMGRIT, beginning
with an analogue of the theory developed in [7] on the error propogation for MGRIT, but
for TriMGRIT. Unfortunately, this has proven rather difficult, mainly due to the difficulty
in solving (algebraically) a tridiagonal system compared to a subdiagonal system. MGRIT’s
natural application is to problems of the form

ui = Φui−1 + gi

whose solutions have a natural inductive form using the operator Φm. On the other hand
the tridiagonal systems we are interested in take the form

ui = Φ(ui−1, ui+1) + gi

and these are much less straightforward to solve explicitly. We believe that developing
error analysis for TriMGRIT will depend on understanding solution propagation for these
equations. We are hopeful that this may be possible, at least for the coarsening factor
m = 2 case.

4.3 Combinations of TriMGRIT and Line Search

Like all iterative algorithms, TriMGRIT is prone to starting out in a fairly good place,
trying to find a better one, overshooting, and landing further away – possibly by amplifying
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certain errors from instabilities that were already present in the starting state. In the worst
case, this can cause divergence.

We wondered, if Tri/MGRIT (TriMGRIT or MGRIT) got us to a certain spot after one
iteration, could we add a line search to “nudge” the values closer to the solution and avoid
possible divergence before the next Tri/MGRIT iteration? Say we want to solve a system
Ax = b. Tri/MGRIT iteratively generates a sequence x1, x2, x3 . . . which we would hope
converges to x. The algorithm normally looks like this:

1. Start with some guessed solution x.

2. Use Tri/MGRIT on x to get x′.

3. Set x← x′ and repeat.

Instead, we use the following algorithm:

1. Start with some guessed solution x.

2. Use Tri/MGRIT on x to get x′.

3. Find α = argmin
α̃
||A(α̃x+ (1− α̃)x′)− b||.

4. Set x← αx+ (1− α)x′ and repeat.

This algorithm seems similar in spirit to a simplification of the Generalized Minimal Residual
method (GMRES, given in [24]). GMRES, instead of performing a one-dimensional search
over the the space spanned by the two most recent iterations, performs a minimization over
the space spanned by all candidate solutions found up until the present iteration.

We used a standard golden section search, as described in [23], to find α. This was effec-
tive overall and, in some cases, took problems for which TriMGRIT had previously diverged
and shepherded them to convergence. However, this took quite a long time in practice, and
computational times were often longer than the rest of the algorithm put together. While a
line search is inherently a computationally-intensive activity, this slowdown may also have
been due to the fact that each calculation of a value for the objective function was in parallel
and required communication between CPU cores.

We developed a much cheaper quadratic optimization method which could be used in
the case that A is a linear operator. Let ~w be the vector given by TriMGRIT, that is, x′−x.
Then the problem given in Step 3 above is one of finding the α such that residual at x+α~w
is as minimized. In the linear setting, the function that takes α to the residual squared (the
square of the distance between a point on the line given by α and a fixed point off the line)
is quadratic in α. This enables the following algorithm:

1. Calculate the residual r0 at x and r1 at x′. (TriMGRIT has already calculated these,
so in theory we should be able to implement this step as just reading from a few
variables. In practice, it proved easier just to calculate them again.)

2. Calculate the residual r1/2 at (x+ x′)/2.

3. Calculate a = 2r2
1 + 2r2

0 − 4r2
1/2 and b = −r2

1 − 3r2
0 + 4r2

1/2. (These formulae can

easily be derived by defining f(α) = aα2 + bα + c, setting f(0) = r2
0, f(1) = r2

1, and
f(1/2) = r2

1/2, and solving for a, b, and c.)

4. Set α = − b
2a . (Since f(α) represents a distance, it is always positive, so it has a

global minimum here.)
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In tests, this algorithm was appreciably faster than the golden section search and pro-
duced similar results. Interestingly, these results were not identical, and the small differ-
ence in the values of α in the first iteration led to much larger differences in the next ones.
TriMGRIT still eventually converged to the same value.

We reiterate, however, that we can currently only justify the use of the quadratic search
in a completely linear setting.

4.4 Contributions to XBraid Code

While working on our project, we often found things we wanted to change with the XBraid
code. Some of these changes were small details, such as updating the example scripts
for visualizing outputs from the example programs1, fixing consistency with the output of
example 4 from the examples folder2 3, and noticing small bugs in the trimgrit branch of
the repository45

In addition to these issues, there were a few larger changes that were suggested for the
XBraid code. First, we noticed that a small change to the C++ interface could simplify
some of the user written code6 (this change has yet to be reviewed), with two potential
implementations being given to solve this problem. Finally, we also wrote an interface in
C++ for the TriMGRIT code in XBraid7 which was very useful for our own code, which
was written in C++.

4.5 Our Code

Our code for the crowd model can be found at the Github repository at https://github.
com/Torrencem/crowd_xbraid. It uses (as a git submodule) a branch of our fork of the
XBraid code8 which contains the C++ interface to the TriMGRIT code, as well as any of
the bug fixes we needed for our code in particular. Our code for the pendulum problem can
be found in a branch of our fork of the XBraid repository9.

The README in our repository gives specific instructions for downloading and running
the code. The library we use for sparse matrix manipulation and sparse linear system
solving is Eigen, written in C++, which is also included as a submodule to our main
project repository. Also included in the repository are the C and C++ interfaces to the line
search module described in Section 4.3.

1https://github.com/XBraid/xbraid/pull/44
2https://github.com/XBraid/xbraid/pull/42
3https://github.com/XBraid/xbraid/pull/47
4https://github.com/XBraid/xbraid/issues/58
5https://github.com/XBraid/xbraid/issues/59
6https://github.com/XBraid/xbraid/issues/48
7https://github.com/Torrencem/xbraid/tree/trimgrit_cxx
8https://github.com/Torrencem/xbraid/tree/ipam_2020
9https://github.com/Torrencem/xbraid/tree/ipam_pendulum/examples
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Chapter 5

Conclusion and Further Research

5.1 Conclusion

While, once a problem is properly specified, TriMGRIT can solve it very efficiently by
taking advantage of massively parallel architecture, specifying problems in the correct form
is nontrivial. In particular, without careful strategy, even a technically correctly-specified
problem can diverge in some cases or end up amplifying small errors.

Furthermore, TriMGRIT is not well-understood from a theoretical perspective. This is
to be expected, given that it is a comparatively new algorithm, but means that it is hard to
do things such as choose provably-effective operators. The effectiveness of our line search
demonstrates that, in some cases at least, further processing on intermediate TriMGRIT
results can make previously divergent schemes converge, but we do not understand why this
should happen in those cases in particular.

We have made contributions to all of these areas. Through our studies of the pendulum
and crowd problems, we have provided more examples of, and possibly slightly extended
existing methods for, translating pure mathematics into TriMGRIT. Through our work on
the XBraid code, we have made TriMGRIT more robust, providing a C++ interface and
the option to perform either a line or a quadratic search on the intermediate solutions.
Finally, although we have not been able to derive any explicit formulae for the behaviour
and error of TriMGRIT, we have reviewed several possible approaches which could lead to
some useful analysis later on. We have also identified reasons why a few of the most obvious
ideas do not in fact work as easily as they could.

In our tests, anecdotal though they are, TriMGRIT was able to take advantage of
parallelism to a great degree. In view of this, and the ever-increasing need for parallel-
computing algorithms as discussed in the introduction, we believe that developing rigorous
theories of and practical guidelines for the TriMGRIT algorithm, encompassing the concepts
discussed here as well as, probably, completely new ones, make for important open problems.

5.2 Recommendations for Further Research

This project leaves several open avenues for continued work.

• Our results from Section 4.3 demonstrate that, while TriMGRIT often gives a good
direction to move in, it is not always effective at telling us how far in that direction
to move. Our line search code is general enough to be added onto any problem that
Tri/MGRIT can solve, and anecdotally it seems to work well in many cases, but
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rigorous research into its effectiveness or lack thereof, particularly given that it often
more than doubles the amount of time required for one TriMGRIT iteration, would
be welcome.

This goes double for the three-point quadratic minimization procedure. It seems to
produce results similar to, but not equal to, those of the golden section search, but
we have no proof that this would be the case in all but the most linear situations. We
do not know to what extent it would make a viable replacement to the line search in
general.

• TriMGRIT is a natural algebraic extension of MGRIT, but in some cases the gap
between theoretical results for the two is very large. Since TriMGRIT is formally a
strict generalization of MGRIT one ought to recover all error analysis for MGRIT
by taking analysis for TriMGRIT and restricting one of the off-diagonals to be 0.
Unfortunately, we have not found a direct analogue of any of the many error anal-
ysis techniques available for MGRIT (whether take from the Local Fourier Analyis,
algebraic, or other perspective). This makes one of our central goals - improving
the convergence of TriMGRIT - difficult to consider outside of experimental obser-
vations. We have made an honest attempt at lifting the analysis from MGRIT onto
TriMGRIT, but made little progress.

• The very basic analysis, which does not stretch beyond anecdotal at this point, of
the changes in conversion rate from Section 3.2.3 seems to imply the possibility of
analyzing TriMGRIT’s behavior in terms of that of a problem’s conversion factors.
We do not know what this might lead to, but it could provide a new way to look at
error and convergence analysis.

• Section 4.1 looks on paper like it could lead to new ways of calculating and choosing
coarse-grid operators for TriMGRIT, although we have not had time to test any of it
in the wild.
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Appendix A

Abbreviations

GMRES Generalized Minimal Residual method.

IPAM Institute for Pure and Applied Mathematics. An institute of the NSF, located at
UCLA.

KKT Karush-Kuhn-Tucker, as in “the KKT equations” or “the Karush-Kuhn-Tucker equa-
tions.”

LLNL Lawrence Livermore National Laboratory.

MGRIT MultiGrid Reduction In Time.

NSF National Science Foundation.

RIPS Research in Industrial Projects for Students. A regular summer program at IPAM,
in which teams of undergraduate (or fresh graduate) students participate in sponsored
team research projects.

SQP Sequential Quadratic Programming.

TriMGRIT Tridiagonal MultiGrid Reduction In Time.

Tri/MGRIT Either TriMGRIT or MGRIT.

UCLA The University of California, Los Angeles.
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